» Articles » PMID: 28423323

Liberated PKA Catalytic Subunits Associate with the Membrane Via Myristoylation to Preferentially Phosphorylate Membrane Substrates

Overview
Journal Cell Rep
Publisher Cell Press
Date 2017 Apr 20
PMID 28423323
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons.

Citing Articles

Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and calcium.

Tsai S, Gong Y, Dabbs A, Zahra F, Xu J, Geske A J Biol Chem. 2025; 301(3):108183.

PMID: 39814226 PMC: 11871455. DOI: 10.1016/j.jbc.2025.108183.


PKA regulation of neuronal function requires the dissociation of catalytic subunits from regulatory subunits.

Xiong W, Qin M, Zhong H Elife. 2024; 13.

PMID: 39508822 PMC: 11542917. DOI: 10.7554/eLife.93766.


Structural determinants of protein kinase A essential for CFTR channel activation.

Mihalyi C, Iordanov I, Szollosi A, Csanady L Proc Natl Acad Sci U S A. 2024; 121(46):e2407728121.

PMID: 39495914 PMC: 11573668. DOI: 10.1073/pnas.2407728121.


Enhanced kinase translocation reporters for simultaneous real-time measurement of PKA, ERK, and Ca.

Tsai S, Gong Y, Dabbs A, Zahra F, Xu J, Geske A bioRxiv. 2024; .

PMID: 39411162 PMC: 11475874. DOI: 10.1101/2024.09.30.615856.


Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions.

Zaccolo M, Kovanich D Physiol Rev. 2024; 105(2):541-591.

PMID: 39115424 PMC: 7617275. DOI: 10.1152/physrev.00013.2024.


References
1.
Shoji S, Ericsson L, Walsh K, FISCHER E, Titani K . Amino acid sequence of the catalytic subunit of bovine type II adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1983; 22(15):3702-9. DOI: 10.1021/bi00284a025. View

2.
Thomas M, Moody T, Makhinson M, ODell T . Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron. 1996; 17(3):475-82. DOI: 10.1016/s0896-6273(00)80179-8. View

3.
Chen Y, Saulnier J, Yellen G, Sabatini B . A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2-photon FRET-FLIM imaging. Front Pharmacol. 2014; 5:56. PMC: 3980114. DOI: 10.3389/fphar.2014.00056. View

4.
Gaffarogullari E, Masterson L, Metcalfe E, Traaseth N, Balatri E, Musa M . A myristoyl/phosphoserine switch controls cAMP-dependent protein kinase association to membranes. J Mol Biol. 2011; 411(4):823-36. PMC: 3487414. DOI: 10.1016/j.jmb.2011.06.034. View

5.
Davare M, Avdonin V, Hall D, Peden E, Burette A, Weinberg R . A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science. 2001; 293(5527):98-101. DOI: 10.1126/science.293.5527.98. View