» Articles » PMID: 28410224

Glioma Stem Cells-derived Exosomes Promote the Angiogenic Ability of Endothelial Cells Through MiR-21/VEGF Signal

Overview
Journal Oncotarget
Specialty Oncology
Date 2017 Apr 15
PMID 28410224
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

Glioma stem cells (GSCs) play an important role in glioblastoma prognosis. Exosomes (EXs) mediate cell communication by delivering microRNAs (miRs). Glioblastoma has a high level of miR-21 which could upregulate vascular endothelial growth factor (VEGF) expression. We hypothesized GSC-EXs can promote the angiogenic ability of endothelial cells (ECs) through miR-21/VEGF signal. GSCs were isolated from U-251 cells with stem cell marker CD133. GSCs transfected without or with scramble or miR-21 mimics were used to produce GSC-EXscon, GSC-EXssc and GSC-EXsmiR-21. Human brain ECs were co-cultured with vehicle, GSC-EXscon, GSC-EXssc or GSC-EXsmiR-21 plus VEGF siRNAs (siRNAVEGF). After 24 hours, the angiogenic abilities of ECs were evaluated. The levels of miR-21, VEGF and p-Flk1/VEGFR2 were determined. Results showed: 1) Over 90% of purified GSCs expressed CD133; 2) The levels of miR-21 and VEGF in GSCs and GSC-EXs were up-regulated by miR-21 mimic transfection; 3) Compared to GSC-EXscon or GSC-EXssc, GSC-EXsmiR-21 were more effective in elevating the levels of miR-21 and VEGF, and the ratio of p-Flk1/VEGFR2 in ECs; 4) GSC-EXsmiR-21 were more effective in promoting the angiogenic ability of ECs than GSC-EXscon or GSC-EXssc, which were remarkably reduced by siRNAVEGF pretreatment. In conclusion, GSC-EXs can promote the angiogenic ability of ECs by stimulating miR-21/VEGF/VEGFR2 signal pathway.

Citing Articles

Unlocking the therapeutic potential of tumor-derived EVs in ischemia-reperfusion: a breakthrough perspective from glioma and stroke.

Hao Z, Guan W, Wei W, Li M, Xiao Z, Sun Q J Neuroinflammation. 2025; 22(1):84.

PMID: 40089793 DOI: 10.1186/s12974-025-03405-7.


Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma.

Jin P, Bai X IBRO Neurosci Rep. 2025; 18:323-337.

PMID: 40034544 PMC: 11872630. DOI: 10.1016/j.ibneur.2025.01.015.


Critical roles of miR-21 in promotions angiogenesis: friend or foe?.

Saadh M, Jasim N, Ahmed M, Ballal S, Kumar A, Atteri S Clin Exp Med. 2025; 25(1):66.

PMID: 39998742 PMC: 11861128. DOI: 10.1007/s10238-025-01600-7.


Impact of hypoxia on the molecular content of glioblastoma-derived exosomes.

Di Giulio S, Carata E, Muci M, Mariano S, Panzarini E Extracell Vesicles Circ Nucl Acids. 2024; 5(1):1-15.

PMID: 39698411 PMC: 11648508. DOI: 10.20517/evcna.2023.52.


Glioma-Derived Exosomes and Their Application as Drug Nanoparticles.

Mastantuono S, Manini I, Di Loreto C, Beltrami A, Vindigni M, Cesselli D Int J Mol Sci. 2024; 25(23).

PMID: 39684236 PMC: 11641060. DOI: 10.3390/ijms252312524.


References
1.
Magee J, Piskounova E, Morrison S . Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012; 21(3):283-96. PMC: 4504432. DOI: 10.1016/j.ccr.2012.03.003. View

2.
Chen T, Chen J, Wang X . Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif. 2006; 39(2):117-25. PMC: 6495845. DOI: 10.1111/j.1365-2184.2006.00375.x. View

3.
Wang X, Gu H, Huang W, Peng J, Li Y, Yang L . Hsp20-Mediated Activation of Exosome Biogenesis in Cardiomyocytes Improves Cardiac Function and Angiogenesis in Diabetic Mice. Diabetes. 2016; 65(10):3111-28. PMC: 5033265. DOI: 10.2337/db15-1563. View

4.
Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev Cancer. 2005; 5(4):275-84. DOI: 10.1038/nrc1590. View

5.
Giusti I, Delle Monache S, Di Francesco M, Sanita P, DAscenzo S, Gravina G . From glioblastoma to endothelial cells through extracellular vesicles: messages for angiogenesis. Tumour Biol. 2016; 37(9):12743-12753. DOI: 10.1007/s13277-016-5165-0. View