» Articles » PMID: 28406606

Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry

Overview
Journal Anal Chem
Specialty Chemistry
Date 2017 Apr 14
PMID 28406606
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of ∼50 residues protruding from the nucleosome core. Using high-definition differential ion mobility spectrometry (FAIMS) with electron transfer dissociation, we demonstrate rapid baseline gas-phase separation and identification of tails involving monomethylation, trimethylation, acetylation, or phosphorylation in biologically relevant positions. These are by far the largest variant peptides resolved by any method, some with PTM contributing just 0.25% to the mass. This opens the door to similar separations for intact proteins and in top-down proteomics.

Citing Articles

Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry.

Jeanne Dit Fouque K, Kaplan D, Voinov V, Holck F, Jensen O, Fernandez-Lima F Anal Chem. 2021; 93(27):9575-9582.

PMID: 34170114 PMC: 8568060. DOI: 10.1021/acs.analchem.1c01735.


Combinatorial Histone H3 Modifications Are Dynamically Altered in Distinct Cell Cycle Phases.

Lu C, Coradin M, Janssen K, Sidoli S, Garcia B J Am Soc Mass Spectrom. 2021; 32(6):1300-1311.

PMID: 33818074 PMC: 8380055. DOI: 10.1021/jasms.0c00451.


Ion Activation Methods for Peptides and Proteins.

Macias L, Santos I, Brodbelt J Anal Chem. 2019; 92(1):227-251.

PMID: 31665881 PMC: 6949381. DOI: 10.1021/acs.analchem.9b04859.


Evolution of Structural Biology through the Lens of Mass Spectrometry.

Kaur U, Johnson D, Chea E, Deredge D, Espino J, Jones L Anal Chem. 2018; 91(1):142-155.

PMID: 30457831 PMC: 6472977. DOI: 10.1021/acs.analchem.8b05014.


A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.

Pfammatter S, Bonneil E, McManus F, Prasad S, Bailey D, Belford M Mol Cell Proteomics. 2018; 17(10):2051-2067.

PMID: 30007914 PMC: 6166672. DOI: 10.1074/mcp.TIR118.000862.


References
1.
Tang K, Li F, Shvartsburg A, Strittmatter E, Smith R . Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal Chem. 2005; 77(19):6381-8. PMC: 1829301. DOI: 10.1021/ac050871x. View

2.
Bridon G, Bonneil E, Muratore-Schroeder T, Caron-Lizotte O, Thibault P . Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. J Proteome Res. 2011; 11(2):927-40. DOI: 10.1021/pr200722s. View

3.
Canterbury J, Yi X, Hoopmann M, MacCoss M . Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics. Anal Chem. 2008; 80(18):6888-97. PMC: 2818878. DOI: 10.1021/ac8004988. View

4.
Taverna S, Ueberheide B, Liu Y, Tackett A, Diaz R, Shabanowitz J . Long-distance combinatorial linkage between methylation and acetylation on histone H3 N termini. Proc Natl Acad Sci U S A. 2007; 104(7):2086-91. PMC: 1892956. DOI: 10.1073/pnas.0610993104. View

5.
Cooper H . To What Extent is FAIMS Beneficial in the Analysis of Proteins?. J Am Soc Mass Spectrom. 2016; 27(4):566-77. PMC: 4792363. DOI: 10.1007/s13361-015-1326-4. View