Vorechovsky I
J Hum Genet. 2024; 70(3):125-133.
PMID: 39639151
PMC: 11802449.
DOI: 10.1038/s10038-024-01308-8.
Karlebach G, Steinhaus R, Danis D, Devoucoux M, Anczukow O, Sheynkman G
NPJ Genom Med. 2024; 9(1):54.
PMID: 39496626
PMC: 11535429.
DOI: 10.1038/s41525-024-00432-w.
Tellier M, Ansa G, Murphy S
PLoS One. 2024; 19(10):e0310519.
PMID: 39432454
PMC: 11493277.
DOI: 10.1371/journal.pone.0310519.
Biswas J, Boussi L, Stein E, Abdel-Wahab O
J Exp Med. 2024; 221(11).
PMID: 39316554
PMC: 11448470.
DOI: 10.1084/jem.20230891.
Bao N, Wang Z, Fu J, Dong H, Jin Y
Acta Biochim Biophys Sin (Shanghai). 2024; 57(1):3-21.
PMID: 39034824
PMC: 11802352.
DOI: 10.3724/abbs.2024119.
Alternative splicing in prostate cancer progression and therapeutic resistance.
Rawat C, Heemers H
Oncogene. 2024; 43(22):1655-1668.
PMID: 38658776
PMC: 11136669.
DOI: 10.1038/s41388-024-03036-x.
Cooperation and Competition of RNA Secondary Structure and RNA-Protein Interactions in the Regulation of Alternative Splicing.
Vorobeva M, Skvortsov D, Pervouchine D
Acta Naturae. 2024; 15(4):23-31.
PMID: 38234601
PMC: 10790352.
DOI: 10.32607/actanaturae.26826.
Impact on splicing in of random 50-base sequences inserted into an intron.
Perchlik M, Sasse A, Mostafavi S, Fields S, Cuperus J
RNA. 2023; 30(1):52-67.
PMID: 37879864
PMC: 10726166.
DOI: 10.1261/rna.079752.123.
Alternative splicing is coupled to gene expression in a subset of variably expressed genes.
Karlebach G, Steinhaus R, Danis D, Devoucoux M, Anczukow O, Sheynkman G
bioRxiv. 2023; .
PMID: 37398049
PMC: 10312658.
DOI: 10.1101/2023.06.13.544742.
Pre-mRNA splicing and its cotranscriptional connections.
Shenasa H, Bentley D
Trends Genet. 2023; 39(9):672-685.
PMID: 37236814
PMC: 10524715.
DOI: 10.1016/j.tig.2023.04.008.
How does precursor RNA structure influence RNA processing and gene expression?.
Herbert A, Hatfield A, Lackey L
Biosci Rep. 2023; 43(3).
PMID: 36689327
PMC: 9977717.
DOI: 10.1042/BSR20220149.
Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing.
Horn T, Gosliga A, Li C, Enculescu M, Legewie S
NPJ Syst Biol Appl. 2023; 9(1):1.
PMID: 36653378
PMC: 9849329.
DOI: 10.1038/s41540-022-00264-3.
Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing.
Saldi T, Riemondy K, Erickson B, Bentley D
Mol Cell. 2021; 81(8):1789-1801.e5.
PMID: 33631106
PMC: 8052309.
DOI: 10.1016/j.molcel.2021.01.040.
A machine learning-based framework for modeling transcription elongation.
Feng P, Xiao A, Fang M, Wan F, Li S, Lang P
Proc Natl Acad Sci U S A. 2021; 118(6).
PMID: 33526657
PMC: 8017690.
DOI: 10.1073/pnas.2007450118.
Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control.
Taylor K, Sobczak K
Int J Mol Sci. 2020; 21(14).
PMID: 32708277
PMC: 7404189.
DOI: 10.3390/ijms21145161.
Revisiting the window of opportunity for cotranscriptional splicing in budding yeast.
Aslanzadeh V, Beggs J
RNA. 2020; 26(9):1081-1085.
PMID: 32439718
PMC: 7430680.
DOI: 10.1261/rna.075895.120.
A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes.
Maslon M, Braunschweig U, Aitken S, Mann A, Kilanowski F, Hunter C
EMBO J. 2019; 38(9).
PMID: 30988016
PMC: 6484407.
DOI: 10.15252/embj.2018101244.
Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing.
Saldi T, Fong N, Bentley D
Genes Dev. 2018; 32(3-4):297-308.
PMID: 29483154
PMC: 5859970.
DOI: 10.1101/gad.310896.117.
Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
Aslanzadeh V, Huang Y, Sanguinetti G, Beggs J
Genome Res. 2017; 28(2):203-213.
PMID: 29254943
PMC: 5793784.
DOI: 10.1101/gr.225615.117.
Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X.
Weldon C, Dacanay J, Gokhale V, Boddupally P, Behm-Ansmant I, Burley G
Nucleic Acids Res. 2017; 46(2):886-896.
PMID: 29156002
PMC: 5778605.
DOI: 10.1093/nar/gkx1122.