» Articles » PMID: 28401915

Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates

Overview
Journal Sci Rep
Specialty Science
Date 2017 Apr 13
PMID 28401915
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Equi-atomic FeRh is highly unusual in that it undergoes a first order meta-magnetic phase transition from an antiferromagnet to a ferromagnet above room temperature (T ≈ 370 K). This behavior opens new possibilities for creating multifunctional magnetic and spintronic devices which can utilise both thermal and applied field energy to change state and functionalise composites. A key requirement in realising multifunctional devices is the need to understand and control the properties of FeRh in the extreme thin film limit (t < 10 nm) where interfaces are crucial. Here we determine the properties of FeRh films in the thickness range 2.5-10 nm grown directly on MgO substrates. Our magnetometry and structural measurements show that a perpendicular strain field exists in these thin films which results in an increase in the phase transition temperature as thickness is reduced. Modelling using a spin dynamics approach supports the experimental observations demonstrating the critical role of the atomic layers close to the MgO interface.

Citing Articles

Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets.

Motyckova L, Arregi J, Stano M, Prusa S, castkova K, Uhlir V ACS Appl Mater Interfaces. 2023; 15(6):8653-8665.

PMID: 36720004 PMC: 10016751. DOI: 10.1021/acsami.2c20107.


Determination of sub-ps lattice dynamics in FeRh thin films.

Grimes M, Ueda H, Ozerov D, Pressacco F, Parchenko S, Apseros A Sci Rep. 2022; 12(1):8584.

PMID: 35595862 PMC: 9122986. DOI: 10.1038/s41598-022-12602-w.


Magnetic response of FeRh to static and dynamic disorder.

Eggert B, Schmeink A, Lill J, Liedke M, Kentsch U, Butterling M RSC Adv. 2022; 10(24):14386-14395.

PMID: 35498452 PMC: 9051944. DOI: 10.1039/d0ra01410a.


Repeatable and deterministic all electrical switching in a mixed phase artificial multiferroic.

Griggs W, Thomson T Sci Rep. 2022; 12(1):5332.

PMID: 35351999 PMC: 8964689. DOI: 10.1038/s41598-022-09417-0.


Reversible control of magnetism in FeRh thin films.

Merkel D, Lengyel A, Nagy D, Nemeth A, Horvath Z, Bogdan C Sci Rep. 2020; 10(1):13923.

PMID: 32811888 PMC: 7435192. DOI: 10.1038/s41598-020-70899-x.


References
1.
Lee Y, Liu Z, Heron J, Clarkson J, Hong J, Ko C . Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015; 6:5959. DOI: 10.1038/ncomms6959. View

2.
Bennett S, Wong A, Glavic A, Herklotz A, Urban C, Valmianski I . Giant Controllable Magnetization Changes Induced by Structural Phase Transitions in a Metamagnetic Artificial Multiferroic. Sci Rep. 2016; 6:22708. PMC: 4778125. DOI: 10.1038/srep22708. View

3.
Pressacco F, Uhlir V, Gatti M, Bendounan A, Fullerton E, Sirotti F . Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci Rep. 2016; 6:22383. PMC: 4776116. DOI: 10.1038/srep22383. View

4.
Baldasseroni C, Bordel C, Antonakos C, Scholl A, Stone K, Kortright J . Temperature-driven growth of antiferromagnetic domains in thin-film FeRh. J Phys Condens Matter. 2015; 27(25):256001. DOI: 10.1088/0953-8984/27/25/256001. View

5.
Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q . Room-temperature antiferromagnetic memory resistor. Nat Mater. 2014; 13(4):367-74. DOI: 10.1038/nmat3861. View