Classical Synchronization Indicates Persistent Entanglement in Isolated Quantum Systems
Overview
Affiliations
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum.
Brzobohaty O, Duchan M, Jakl P, Jezek J, Siler M, Zemanek P Nat Commun. 2023; 14(1):5441.
PMID: 37673926 PMC: 10482900. DOI: 10.1038/s41467-023-41129-5.
Lau H, Davidsen J, Simon C Sci Rep. 2023; 13(1):8590.
PMID: 37237118 PMC: 10220079. DOI: 10.1038/s41598-023-35061-3.
Polaritons and excitons: Hamiltonian design for enhanced coherence.
Scholes G Proc Math Phys Eng Sci. 2020; 476(2242):20200278.
PMID: 33223931 PMC: 7655764. DOI: 10.1098/rspa.2020.0278.
Kreinberg S, Porte X, Schicke D, Lingnau B, Schneider C, Hofling S Nat Commun. 2019; 10(1):1539.
PMID: 30948766 PMC: 6449346. DOI: 10.1038/s41467-019-09559-2.
Dynamically induced cascading failures in power grids.
Schafer B, Witthaut D, Timme M, Latora V Nat Commun. 2018; 9(1):1975.
PMID: 29773793 PMC: 5958123. DOI: 10.1038/s41467-018-04287-5.