» Articles » PMID: 28383498

QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota

Overview
Journal Biomolecules
Publisher MDPI
Date 2017 Apr 7
PMID 28383498
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Archaeosine (G⁺) is a structurally complex modified nucleoside ubiquitous to the Archaea, where it is found in the D-loop of virtually all archaeal transfer RNA (tRNA). Its unique structure, which includes a formamidine group that carries a formal positive charge, and location in the tRNA, led to the proposal that it serves a key role in stabilizing tRNA structure. Although G⁺ is limited to the Archaea, it is structurally related to the bacterial modified nucleoside queuosine, and the two share homologous enzymes for the early steps of their biosynthesis. In the Euryarchaeota, the last step of the archaeosine biosynthetic pathway involves the amidation of a nitrile group on an archaeosine precursor to give formamidine, a reaction catalyzed by the enzyme Archaeosine Synthase (ArcS). Most Crenarchaeota lack ArcS, but possess two proteins that inversely distribute with ArcS and each other, and are implicated in G⁺ biosynthesis. Here, we describe biochemical studies of one of these, the protein QueF-like (QueF-L) from that demonstrate the catalytic activity of QueF-L, establish where in the pathway QueF-L acts, and identify the source of ammonia in the reaction.

Citing Articles

Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages.

de Crecy-Lagard V, Hutinet G, Cediel-Becerra J, Yuan Y, Zallot R, Chevrette M Microbiol Mol Biol Rev. 2024; 88(1):e0019923.

PMID: 38421302 PMC: 10966956. DOI: 10.1128/mmbr.00199-23.


Four additional natural 7-deazaguanine derivatives in phages and how to make them.

Cui L, Balamkundu S, Liu C, Ye H, Hourihan J, Rausch A Nucleic Acids Res. 2023; 51(17):9214-9226.

PMID: 37572349 PMC: 10516641. DOI: 10.1093/nar/gkad657.


Bacteriophage vB_PagS_MED16-A Siphovirus Containing a 2'-Deoxy-7-amido-7-deazaguanosine-Modified DNA.

Simoliuniene M, Zukauskiene E, Truncaite L, Cui L, Hutinet G, Kazlauskas D Int J Mol Sci. 2021; 22(14).

PMID: 34298953 PMC: 8306585. DOI: 10.3390/ijms22147333.


Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization.

Turner B, Burkhart B, Weidenbach K, Ross R, Limbach P, Schmitz R J Bacteriol. 2020; 202(8).

PMID: 32041795 PMC: 7099136. DOI: 10.1128/JB.00748-19.


7-Deazaguanine modifications protect phage DNA from host restriction systems.

Hutinet G, Kot W, Cui L, Hillebrand R, Balamkundu S, Gnanakalai S Nat Commun. 2019; 10(1):5442.

PMID: 31784519 PMC: 6884629. DOI: 10.1038/s41467-019-13384-y.


References
1.
ZALKIN H . The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993; 66:203-309. DOI: 10.1002/9780470123126.ch5. View

2.
Massiere F . The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci. 1998; 54(3):205-22. PMC: 11147313. DOI: 10.1007/s000180050145. View

3.
Phillips G, Chikwana V, Maxwell A, El-Yacoubi B, Swairjo M, Iwata-Reuyl D . Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA. J Biol Chem. 2010; 285(17):12706-13. PMC: 2857094. DOI: 10.1074/jbc.M110.102236. View

4.
Cantara W, Crain P, Rozenski J, McCloskey J, Harris K, Zhang X . The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 2010; 39(Database issue):D195-201. PMC: 3013656. DOI: 10.1093/nar/gkq1028. View

5.
Hoops G, Townsend L, Garcia G . tRNA-guanine transglycosylase from Escherichia coli: structure-activity studies investigating the role of the aminomethyl substituent of the heterocyclic substrate PreQ1. Biochemistry. 1995; 34(46):15381-7. DOI: 10.1021/bi00046a047. View