» Articles » PMID: 28382928

DNA Origami-based Shape IDs for Single-molecule Nanomechanical Genotyping

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Apr 7
PMID 28382928
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

Citing Articles

DNA Origami Vesicle Sensors with Triggered Single-Molecule Cargo Transfer.

Buber E, Yaadav R, Schroder T, Franquelim H, Tinnefeld P Angew Chem Int Ed Engl. 2024; 63(49):e202408295.

PMID: 39248369 PMC: 11586697. DOI: 10.1002/anie.202408295.


Tetrahedral framework nucleic acids for improving wound healing.

Zou W, Lu J, Zhang L, Sun D J Nanobiotechnology. 2024; 22(1):113.

PMID: 38491372 PMC: 10943864. DOI: 10.1186/s12951-024-02365-z.


DNA-Based Molecular Machines.

Mao X, Liu M, Li Q, Fan C, Zuo X JACS Au. 2022; 2(11):2381-2399.

PMID: 36465542 PMC: 9709946. DOI: 10.1021/jacsau.2c00292.


[Application of DNA origami in nanobiomedicine].

Zhang P, Xia Q, Wei Y, Chen W, Wang J, Li P Nan Fang Yi Ke Da Xue Xue Bao. 2021; 41(6):960-964.

PMID: 34238752 PMC: 8267976. DOI: 10.12122/j.issn.1673-4254.2021.06.22.


Rationally Programming Nanomaterials with DNA for Biomedical Applications.

He L, Mu J, Gang O, Chen X Adv Sci (Weinh). 2021; 8(8):2003775.

PMID: 33898180 PMC: 8061415. DOI: 10.1002/advs.202003775.


References
1.
Xiao M, Wan E, Chu C, Hsueh W, Cao Y, Kwok P . Direct determination of haplotypes from single DNA molecules. Nat Methods. 2009; 6(3):199-201. PMC: 3880790. DOI: 10.1038/nmeth.1301. View

2.
Abecasis G, Auton A, Brooks L, DePristo M, Durbin R, Handsaker R . An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56-65. PMC: 3498066. DOI: 10.1038/nature11632. View

3.
Zadeh J, Steenberg C, Bois J, Wolfe B, Pierce M, Khan A . NUPACK: Analysis and design of nucleic acid systems. J Comput Chem. 2010; 32(1):170-3. DOI: 10.1002/jcc.21596. View

4.
Peters B, Kermani B, Sparks A, Alferov O, Hong P, Alexeev A . Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature. 2012; 487(7406):190-5. PMC: 3397394. DOI: 10.1038/nature11236. View

5.
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G . The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009; 325(5944):1110-4. DOI: 10.1126/science.1176210. View