» Articles » PMID: 28367451

Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance

Overview
Journal J Diabetes Res
Publisher Wiley
Specialty Endocrinology
Date 2017 Apr 4
PMID 28367451
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions.

Citing Articles

Plant-derived cell-penetrating microprotein α-astratide aM1 targets Akt signaling and alleviates insulin resistance.

Dutta B, Loo S, Kam A, Tam J Cell Mol Life Sci. 2023; 80(10):293.

PMID: 37715850 PMC: 10505102. DOI: 10.1007/s00018-023-04937-y.


Metabolic-Associated Fatty Liver Disease and Insulin Resistance: A Review of Complex Interlinks.

Barber T, Kabisch S, Pfeiffer A, Weickert M Metabolites. 2023; 13(6).

PMID: 37367914 PMC: 10304744. DOI: 10.3390/metabo13060757.


Cholesterol: An Important Determinant of Muscle Atrophy in Astronauts.

Le H, Rai V, Agrawal D J Biotechnol Biomed. 2023; 6(1):67-79.

PMID: 37006714 PMC: 10062007. DOI: 10.26502/jbb.2642-91280072.


Advances in Ca1.1 gating: New insights into permeation and voltage-sensing mechanisms.

Bibollet H, Kramer A, Bannister R, Hernandez-Ochoa E Channels (Austin). 2023; 17(1):2167569.

PMID: 36642864 PMC: 9851209. DOI: 10.1080/19336950.2023.2167569.


Nonalcoholic fatty liver disease and insulin resistance in children.

Song K, Kim H, Chae H Clin Exp Pediatr. 2023; 66(12):512-519.

PMID: 36634667 PMC: 10694550. DOI: 10.3345/cep.2022.01312.


References
1.
Taniguchi C, Emanuelli B, Kahn C . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006; 7(2):85-96. DOI: 10.1038/nrm1837. View

2.
Fantini J, Barrantes F . Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta. 2009; 1788(11):2345-61. DOI: 10.1016/j.bbamem.2009.08.016. View

3.
Pouvreau S, Berthier C, Blaineau S, Amsellem J, Coronado R, Strube C . Membrane cholesterol modulates dihydropyridine receptor function in mice fetal skeletal muscle cells. J Physiol. 2004; 555(Pt 2):365-81. PMC: 1664851. DOI: 10.1113/jphysiol.2003.055285. View

4.
Habegger K, Hoffman N, Ridenour C, Brozinick J, Elmendorf J . AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology. 2012; 153(5):2130-41. PMC: 3339638. DOI: 10.1210/en.2011-2099. View

5.
Ishikura S, Bilan P, Klip A . Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun. 2007; 353(4):1074-9. DOI: 10.1016/j.bbrc.2006.12.140. View