» Articles » PMID: 28346432

Nanoscale Capillary Freezing of Ionic Liquids Confined Between Metallic Interfaces and the Role of Electronic Screening

Overview
Journal Nat Mater
Date 2017 Mar 28
PMID 28346432
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

Citing Articles

Momentum tunnelling between nanoscale liquid flows.

Coquinot B, Bui A, Toquer D, Michaelides A, Kavokine N, Cox S Nat Nanotechnol. 2025; .

PMID: 39747601 DOI: 10.1038/s41565-024-01842-8.


Phase transitions of ionic fluids in nanoporous electrodes.

Emrani A, Woodward C, Forsman J Eur Phys J E Soft Matter. 2023; 46(10):91.

PMID: 37792072 PMC: 10550857. DOI: 10.1140/epje/s10189-023-00350-2.


Thin-Film Rheology and Tribology of Imidazolium Ionic Liquids.

Zhang X, Han M, Espinosa-Marzal R ACS Appl Mater Interfaces. 2023; 15(38):45485-45497.

PMID: 37721996 PMC: 10540134. DOI: 10.1021/acsami.3c10018.


Simulation-guided nanofabrication of high-quality practical tungsten probes.

Dong C, Meng G, Saji S, Gao X, Zhang P, Wu D RSC Adv. 2022; 10(41):24280-24287.

PMID: 35516222 PMC: 9055080. DOI: 10.1039/d0ra03967e.


Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids.

Wang Y, He H, Wang C, Lu Y, Dong K, Huo F JACS Au. 2022; 2(3):543-561.

PMID: 35373210 PMC: 8965826. DOI: 10.1021/jacsau.1c00538.


References
1.
Elbourne A, McDonald S, Voichovsky K, Endres F, Warr G, Atkin R . Nanostructure of the Ionic Liquid-Graphite Stern Layer. ACS Nano. 2015; 9(7):7608-20. DOI: 10.1021/acsnano.5b02921. View

2.
Bovio S, Podesta A, Lenardi C, Milani P . Evidence of extended solidlike layering in [Bmim][NTf2] ionic liquid thin films at room-temperature. J Phys Chem B. 2009; 113(19):6600-3. DOI: 10.1021/jp9022234. View

3.
Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins K, Radhakrishnan R . Effects of confinement on freezing and melting. J Phys Condens Matter. 2011; 18(6):R15-68. DOI: 10.1088/0953-8984/18/6/R01. View

4.
Agrawal K, Shimizu S, Drahushuk L, Kilcoyne D, Strano M . Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat Nanotechnol. 2016; 12(3):267-273. DOI: 10.1038/nnano.2016.254. View

5.
Secchi E, Nigues A, Jubin L, Siria A, Bocquet L . Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes. Phys Rev Lett. 2016; 116(15):154501. PMC: 4984977. DOI: 10.1103/PhysRevLett.116.154501. View