» Articles » PMID: 28336379

Synthetic Nanovaccines for Immunotherapy

Overview
Specialty Pharmacology
Date 2017 Mar 25
PMID 28336379
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Although vaccination is historically one of the most successful strategies for the prevention of infectious diseases, development of vaccines for cancer and many chronic infections, such as HIV, malaria, and tuberculosis, has remained a challenge. Strong and long-lasting antigen-specific T cell responses are critical for therapy of these diseases. A major challenge in achieving a robust CD8+ T cell response is the requirement of spatio-temporal orchestration of antigen cross-presentation in antigen-presenting cells with innate stimulation. Here, we discuss the development of nanoparticle vaccine (nanovaccine) that modulates the innate immune system and enhances adaptive immunity with reduced toxicity. We address how nanovaccines can integrate multiple functions, such as lymph node targeting, antigen presentation, and stimulation of innate immunity, to achieve a robust T cell response for immunotherapy.

Citing Articles

Adjuvant-free, self-assembling ferritin nanoparticle vaccine coupled with influenza virus hemagglutinin protein carrying M1 and PADRE epitopes elicits cross-protective immune responses.

Zhao Y, Guo S, Liu J, Wang Y, Wang B, Peng C Front Immunol. 2025; 16:1519866.

PMID: 39958330 PMC: 11827429. DOI: 10.3389/fimmu.2025.1519866.


Cross-protection against homo and heterologous influenza viruses via intranasal administration of an HA chimeric multiepitope nanoparticle vaccine.

Zhao Y, Liu J, Peng C, Guo S, Wang B, Chen L J Nanobiotechnology. 2025; 23(1):77.

PMID: 39905416 PMC: 11792681. DOI: 10.1186/s12951-025-03122-6.


Tracing Sentinel Lymph Nodes and Inhibiting Lymphatic Metastasis with TiN Nanobipyramids Through Photothermal Therapy.

Xu Y, Bai X, Chen J, Wu X, Yin D, Yuan G Int J Nanomedicine. 2024; 19:13579-13592.

PMID: 39720216 PMC: 11668323. DOI: 10.2147/IJN.S488480.


Precision Nanovaccines for Potent Vaccination.

Liu H, Chen H, Yang Z, Wen Z, Gao Z, Liu Z JACS Au. 2024; 4(8):2792-2810.

PMID: 39211600 PMC: 11350730. DOI: 10.1021/jacsau.4c00568.


Revolutionizing lymph node metastasis imaging: the role of drug delivery systems and future perspectives.

Cai Z, Li Z, Zhong N, Cao L, Xiao Y, Li J J Nanobiotechnology. 2024; 22(1):135.

PMID: 38553735 PMC: 10979629. DOI: 10.1186/s12951-024-02408-5.


References
1.
Ballester M, Nembrini C, Dhar N, de Titta A, De Piano C, Pasquier M . Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine. 2011; 29(40):6959-66. DOI: 10.1016/j.vaccine.2011.07.039. View

2.
Fidler I, Raz A, Fogler W, Kirsh R, Bugelski P, Poste G . Design of liposomes to improve delivery of macrophage-augmenting agents to alveolar macrophages. Cancer Res. 1980; 40(12):4460-6. View

3.
Seong S, Matzinger P . Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004; 4(6):469-78. DOI: 10.1038/nri1372. View

4.
Le D, Wang-Gillam A, Picozzi V, Greten T, Crocenzi T, Springett G . Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015; 33(12):1325-33. PMC: 4397277. DOI: 10.1200/JCO.2014.57.4244. View

5.
Ahsan F, Rivas I, Khan M, Torres Suarez A . Targeting to macrophages: role of physicochemical properties of particulate carriers--liposomes and microspheres--on the phagocytosis by macrophages. J Control Release. 2002; 79(1-3):29-40. DOI: 10.1016/s0168-3659(01)00549-1. View