» Articles » PMID: 28334941

RNA-protein Interactions Govern Antiviral Specificity and Encapsidation of Broad Spectrum Anti-HIV Reverse Transcriptase Aptamers

Overview
Specialty Biochemistry
Date 2017 Mar 24
PMID 28334941
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT-aptamer binding specificity on replication, we engineered proviral plasmids encoding diverse RTs within the backbone of HIV-1 strain NL4-3. Viruses inhibited by pseudoknot aptamers were rendered insensitive by a naturally occurring R277K variant, providing the first demonstration of aptamer-specific resistance in cell culture. Naturally occurring, pseudoknot-insensitive viruses were rendered sensitive by the inverse K277R mutation, establishing RT as the genetic locus for aptamer-mediated HIV-1 inhibition. Non-pseudoknot RNA aptamers exhibited broad-spectrum inhibition. Inhibition was observed only when virus was produced in aptamer-expressing cells, indicating that encapsidation is required. HIV-1 suppression magnitude correlated with the number of encapsidated aptamer transcripts per virion, with saturation occurring around 1:1 stoichiometry with packaged RT. Encapsidation specificity suggests that aptamers may encounter dimerized GagPol in the cytosol during viral assembly. This study provides new insights into HIV-1's capacity to escape aptamer-mediated inhibition, the potential utility of broad-spectrum aptamers to overcome resistance, and molecular interactions that occur during viral assembly.

Citing Articles

A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components.

Gruenke P, Mayer M, Aneja R, Schulze W, Song Z, Burke D ACS Infect Dis. 2024; 10(8):2637-2655.

PMID: 39016538 PMC: 11320578. DOI: 10.1021/acsinfecdis.3c00708.


Structural and computational studies of HIV-1 RNA.

Levintov L, Vashisth H RNA Biol. 2023; 21(1):1-32.

PMID: 38100535 PMC: 10730233. DOI: 10.1080/15476286.2023.2289709.


Aptamers: A prospective tool for infectious diseases diagnosis.

Chen J, Zhou J, Peng Y, Xie Y, Xiao Y J Clin Lab Anal. 2022; 36(11):e24725.

PMID: 36245423 PMC: 9701868. DOI: 10.1002/jcla.24725.


Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication.

Gruenke P, Aneja R, Welbourn S, Ukah O, Sarafianos S, Burke D Nucleic Acids Res. 2022; 50(3):1701-1717.

PMID: 35018437 PMC: 8860611. DOI: 10.1093/nar/gkab1293.


Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy.

Yadavalli T, Volety I, Shukla D Pharmaceutics. 2021; 13(10).

PMID: 34683938 PMC: 8540715. DOI: 10.3390/pharmaceutics13101646.


References
1.
Sharaf N, Poliner E, Slack R, Christen M, Byeon I, Parniak M . The p66 immature precursor of HIV-1 reverse transcriptase. Proteins. 2014; 82(10):2343-52. PMC: 4441793. DOI: 10.1002/prot.24594. View

2.
Chaloin L, Lehmann M, Sczakiel G, Restle T . Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 2002; 30(18):4001-8. PMC: 137107. DOI: 10.1093/nar/gkf522. View

3.
Mann D, OBrien S, Gilbert D, Reid Y, Popovic M, Gallo R . Origin of the HIV-susceptible human CD4+ cell line H9. AIDS Res Hum Retroviruses. 1989; 5(3):253-5. DOI: 10.1089/aid.1989.5.253. View

4.
Briggs J, Simon M, Gross I, Krausslich H, Fuller S, Vogt V . The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol. 2004; 11(7):672-5. DOI: 10.1038/nsmb785. View

5.
Zhang H, Yang B, Pomerantz R, Zhang C, Arunachalam S, Gao L . The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003; 424(6944):94-8. PMC: 1350966. DOI: 10.1038/nature01707. View