» Articles » PMID: 28334797

Molecular Mechanism Governing Ratio-dependent Transcription Regulation in the CcdAB Operon

Overview
Specialty Biochemistry
Date 2017 Mar 24
PMID 28334797
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Bacteria can become transiently tolerant to several classes of antibiotics. This phenomenon known as persistence is regulated by small genetic elements called toxin-antitoxin modules with intricate yet often poorly understood self-regulatory features. Here, we describe the structures of molecular complexes and interactions that drive the transcription regulation of the ccdAB toxin-antitoxin module. Low specificity and affinity of the antitoxin CcdA2 for individual binding sites on the operator are enhanced by the toxin CcdB2, which bridges the CcdA2 dimers. This results in a unique extended repressing complex that spirals around the operator and presents equally spaced DNA binding sites. The multivalency of binding sites induces a digital on-off switch for transcription, regulated by the toxin:antitoxin ratio. The ratio at which this switch occurs is modulated by non-specific interactions with the excess chromosomal DNA. Altogether, we present the molecular mechanisms underlying the ratio-dependent transcriptional regulation of the ccdAB operon.

Citing Articles

Genomic characterization of a clonal emergent Minnesota lineage in Brazil reveals the presence of a novel megaplasmid of resistance and virulence.

Dos Santos A, Panzenhagen P, Ferrari R, Portes A, de Jesus A, Ochioni A Appl Environ Microbiol. 2024; 90(11):e0157924.

PMID: 39475288 PMC: 11577784. DOI: 10.1128/aem.01579-24.


The biological function of the type II toxin-antitoxin system in recurrent urinary tract infections.

Zhang H, Tao S, Chen H, Fang Y, Xu Y, Chen L Front Microbiol. 2024; 15:1379625.

PMID: 38690370 PMC: 11059956. DOI: 10.3389/fmicb.2024.1379625.


Toxin:antitoxin ratio sensing autoregulation of the module.

Garcia-Rodriguez G, Girardin Y, Singh R, Volkov A, Van Dyck J, Muruganandam G Sci Adv. 2024; 10(1):eadj2403.

PMID: 38181072 PMC: 10776004. DOI: 10.1126/sciadv.adj2403.


Molecular bases for strong phenotypic effects of single synonymous codon substitutions in the E. coli ccdB toxin gene.

Bajaj P, Bhasin M, Varadarajan R BMC Genomics. 2023; 24(1):732.

PMID: 38049728 PMC: 10694988. DOI: 10.1186/s12864-023-09817-0.


Dynamics-Based Regulatory Switches of Type II Antitoxins: Insights into New Antimicrobial Discovery.

Lee K, Lee B Antibiotics (Basel). 2023; 12(4).

PMID: 37106997 PMC: 10135005. DOI: 10.3390/antibiotics12040637.


References
1.
Bernard P, Couturier M . Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol. 1992; 226(3):735-45. DOI: 10.1016/0022-2836(92)90629-x. View

2.
Lewis K . Persister cells. Annu Rev Microbiol. 2010; 64:357-72. DOI: 10.1146/annurev.micro.112408.134306. View

3.
Behrmann E, Tao G, Stokes D, Egelman E, Raunser S, Penczek P . Real-space processing of helical filaments in SPARX. J Struct Biol. 2012; 177(2):302-13. PMC: 3288516. DOI: 10.1016/j.jsb.2011.12.020. View

4.
Overgaard M, Borch J, Gerdes K . RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J Mol Biol. 2009; 394(2):183-96. PMC: 2812701. DOI: 10.1016/j.jmb.2009.09.006. View

5.
Tam J, Kline B . Control of the ccd operon in plasmid F. J Bacteriol. 1989; 171(5):2353-60. PMC: 209908. DOI: 10.1128/jb.171.5.2353-2360.1989. View