» Articles » PMID: 28322435

Genomic Changes Following the Reversal of a Y Chromosome to an Autosome in Drosophila Pseudoobscura

Overview
Journal Evolution
Specialty Biology
Date 2017 Mar 22
PMID 28322435
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10-15 Mya. We used single molecule real-time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ∼78 Kb and is not repeat-dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y-to-dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y-to-dot translocation.

Citing Articles

Development and evolution of Drosophila chromatin landscape in a 3D genome context.

Ali M, Younas L, Liu J, He H, Zhang X, Zhou Q Nat Commun. 2024; 15(1):9452.

PMID: 39487148 PMC: 11530545. DOI: 10.1038/s41467-024-53892-0.


A germline PAF1 paralog complex ensures cell type-specific gene expression.

Vilstrup A, Gupta A, Rasmussen A, Ebert A, Riedelbauch S, Lukassen M Genes Dev. 2024; 38(17-20):866-886.

PMID: 39332828 PMC: 11535153. DOI: 10.1101/gad.351930.124.


Improved assembly of the Pungitius pungitius reference genome.

Wang D, Rastas P, Yi X, Loytynoja A, Kivikoski M, Feng X G3 (Bethesda). 2024; 14(8).

PMID: 38861393 PMC: 11304971. DOI: 10.1093/g3journal/jkae126.


Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution.

Shao Z, Hu J, Jandura A, Wilk R, Jachimowicz M, Ma L Nat Commun. 2024; 15(1):3806.

PMID: 38714658 PMC: 11076287. DOI: 10.1038/s41467-024-47346-w.


In-Depth Satellitome Analyses of 37 Drosophila Species Illuminate Repetitive DNA Evolution in the Drosophila Genus.

Lima L, Ruiz-Ruano F Genome Biol Evol. 2022; 14(5).

PMID: 35511582 PMC: 9113345. DOI: 10.1093/gbe/evac064.


References
1.
Bachtrog D, Andolfatto P . Selection, recombination and demographic history in Drosophila miranda. Genetics. 2006; 174(4):2045-59. PMC: 1698658. DOI: 10.1534/genetics.106.062760. View

2.
Leung W, Shaffer C, Cordonnier T, Wong J, Itano M, Slawson Tempel E . Evolution of a distinct genomic domain in Drosophila: comparative analysis of the dot chromosome in Drosophila melanogaster and Drosophila virilis. Genetics. 2010; 185(4):1519-34. PMC: 2927774. DOI: 10.1534/genetics.110.116129. View

3.
Vicoso B, Bachtrog D . Reversal of an ancient sex chromosome to an autosome in Drosophila. Nature. 2013; 499(7458):332-5. PMC: 4120283. DOI: 10.1038/nature12235. View

4.
Lohe A, Hilliker A, Roberts P . Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993; 134(4):1149-74. PMC: 1205583. DOI: 10.1093/genetics/134.4.1149. View

5.
Song X, Goicoechea J, Ammiraju J, Luo M, He R, Lin J . The 19 genomes of Drosophila: a BAC library resource for genus-wide and genome-scale comparative evolutionary research. Genetics. 2011; 187(4):1023-30. PMC: 3070512. DOI: 10.1534/genetics.111.126540. View