» Articles » PMID: 28321215

IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

Overview
Journal Front Immunol
Date 2017 Mar 22
PMID 28321215
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection.

Citing Articles

Current drugs for HIV-1: from challenges to potential in HIV/AIDS.

Peng Y, Zong Y, Wang D, Chen J, Chen Z, Peng F Front Pharmacol. 2023; 14:1294966.

PMID: 37954841 PMC: 10637376. DOI: 10.3389/fphar.2023.1294966.


The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency.

Rojas M, Luz-Crawford P, Soto-Rifo R, Reyes-Cerpa S, Toro-Ascuy D Cells. 2021; 10(9).

PMID: 34572027 PMC: 8467246. DOI: 10.3390/cells10092378.


HIV replication and latency in monocytes and macrophages.

Veenhuis R, Abreu C, Shirk E, Gama L, Clements J Semin Immunol. 2021; 51:101472.

PMID: 33648815 PMC: 10171083. DOI: 10.1016/j.smim.2021.101472.


Increased Expression on Innate Immune Factors in Placentas From HIV-Infected Mothers Concurs With Dampened Systemic Immune Activation.

Pereira N, Castelo Branco A, Manfrere K, de Lima J, Yoshikawa F, Milanez H Front Immunol. 2020; 11:1822.

PMID: 32983090 PMC: 7477039. DOI: 10.3389/fimmu.2020.01822.


The Role of Macrophages in HIV-1 Persistence and Pathogenesis.

Kruize Z, Kootstra N Front Microbiol. 2019; 10:2828.

PMID: 31866988 PMC: 6906147. DOI: 10.3389/fmicb.2019.02828.


References
1.
Wainberg M, Turner D . Resistance issues with new nucleoside/nucleotide backbone options. J Acquir Immune Defic Syndr. 2004; 37 Suppl 1:S36-43. DOI: 10.1097/01.qai.0000137005.63376.6e. View

2.
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore T . IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2002; 4(1):63-8. DOI: 10.1038/ni873. View

3.
BERGER E, Doms R, Fenyo E, Korber B, Littman D, Moore J . A new classification for HIV-1. Nature. 1998; 391(6664):240. DOI: 10.1038/34571. View

4.
Zhou Y, Wang X, Liu M, Hu Q, Song L, Ye L . A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages. Immunology. 2010; 131(1):40-9. PMC: 2966756. DOI: 10.1111/j.1365-2567.2010.03270.x. View

5.
Lasfar A, Abushahba W, Balan M, Cohen-Solal K . Interferon lambda: a new sword in cancer immunotherapy. Clin Dev Immunol. 2011; 2011:349575. PMC: 3235441. DOI: 10.1155/2011/349575. View