» Articles » PMID: 28316078

5-HT -driven Green Fluorescent Protein Delineates Gustatory Fibers Innervating Sour-responsive Taste Cells: A Labeled Line for Sour Taste?

Overview
Journal J Comp Neurol
Specialty Neurology
Date 2017 Mar 20
PMID 28316078
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT receptors on the gustatory nerves. We show here, using 5-HT GFP mice, that 5-HT -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.

Citing Articles

Give-and-take of gustation: the interplay between gustatory neurons and taste buds.

Landon S, Baker K, Macpherson L Chem Senses. 2024; 49.

PMID: 39078723 PMC: 11315769. DOI: 10.1093/chemse/bjae029.


Diversity and evolution of serotonergic cells in taste buds of elasmobranchs and ancestral actinopterygian fish.

Ikenaga T, Nakamura T, Tajiri T, Tsuji M, Kato D, Ineno T Cell Tissue Res. 2023; 394(3):431-439.

PMID: 37851111 DOI: 10.1007/s00441-023-03837-8.


The elusive cephalic phase insulin response: triggers, mechanisms, and functions.

Langhans W, Watts A, Spector A Physiol Rev. 2022; 103(2):1423-1485.

PMID: 36422994 PMC: 9942918. DOI: 10.1152/physrev.00025.2022.


Physiology of the tongue with emphasis on taste transduction.

Doyle M, Premathilake H, Yao Q, Mazucanti C, Egan J Physiol Rev. 2022; 103(2):1193-1246.

PMID: 36422992 PMC: 9942923. DOI: 10.1152/physrev.00012.2022.


Taste Bud Connectome: Implications for Taste Information Processing.

Wilson C, Lasher R, Yang R, Dzowo Y, Kinnamon J, Finger T J Neurosci. 2021; 42(5):804-816.

PMID: 34876471 PMC: 8808728. DOI: 10.1523/JNEUROSCI.0838-21.2021.


References
1.
Ninomiya Y, Tonosaki K, Funakoshi M . Gustatory neural response in the mouse. Brain Res. 1982; 244(2):370-3. DOI: 10.1016/0006-8993(82)90100-7. View

2.
Breza J, Travers S . P2X2 Receptor Terminal Field Demarcates a "Transition Zone" for Gustatory and Mechanosensory Processing in the Mouse Nucleus Tractus Solitarius. Chem Senses. 2016; 41(6):515-24. PMC: 6276932. DOI: 10.1093/chemse/bjw055. View

3.
Corson J, Erisir A . Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach. J Comp Neurol. 2013; 521(13):2907-26. PMC: 3953562. DOI: 10.1002/cne.23357. View

4.
Travers S . Quinine and citric acid elicit distinctive Fos-like immunoreactivity in the rat nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol. 2002; 282(6):R1798-810. DOI: 10.1152/ajpregu.00590.2001. View

5.
Ye W, Chang R, Bushman J, Tu Y, Mulhall E, Wilson C . The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A. 2015; 113(2):E229-38. PMC: 4720319. DOI: 10.1073/pnas.1514282112. View