» Articles » PMID: 28307386

Contrasting Patterns of Photosynthetic Acclimation and Photoinhibition in Two Evergreen Herbs from a Winter Deciduous Forest

Overview
Journal Oecologia
Date 2017 Mar 18
PMID 28307386
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The relationship between the microclimate within an Oak-Hickory forest and photosynthetic characters of two resident evergreen herbs with contrasting leaf phenologies was investigated on a monthly basis for 1 full year. Heuchera americana has leaf flushes in the spring and fall, with average leaf life spans of 6-7 months. Hexastylis arifolia produces a single cohort of leaves each spring with a leaf life span of 12-13 months. We predicted that among evergreen plants inhabiting a seasonal habitat, a species for which the frequency of leaf turnover is greater than the frequency of seasonal extremes would have a greater annual range in photosynthetic capacity than a species that only produced a single flush of leaves during the year. Photosynthetic parameters, including apparent quantum yield, maximum photosynthetic capacity (P), temperature of maximum photosynthesis, photochemical efficiency of PSII and leaf nitrogen (N) and chlorophyll concentrations, were periodically measured under laboratory conditions in leaves sampled from natural populations of both species. Mature leaves of both species acclimated to changing understory conditions with the mean seasonal differences being significantly greater for Heuchera than for Hexastylis. Area based maximum photosynthetic rates at 25°C were approximately 250% and 100% greater in winter leaves than summer leaves for Heuchera and Hexastylis respectively. Nitrogen concentrations were highest in winter leaves. Chlorophyll concentrations were highest in summer leaves. Low P/N values for these species suggest preferential allocation of leaf nitrogen into non-photosynthetic pools and/or light-harvesting function at the expense of photosynthetic enzymes and electron transport components. Despite the increase in photosynthetic capacity, there was evidence of chronic winter photoinhibition in Hexastylis, but not in Heuchera. Among these ecologically similar species, there appears to be a trade-off between the frequency of leaf production and the balance of photosynthetic acclimation and photoinhibition.

Citing Articles

Terrestrial and Floating Aquatic Plants Differ in Acclimation to Light Environment.

Lopez-Pozo M, Adams 3rd W, Polutchko S, Demmig-Adams B Plants (Basel). 2023; 12(10).

PMID: 37653846 PMC: 10224479. DOI: 10.3390/plants12101928.


Dynamic seasonal changes in photosynthesis systems in leaves of Asarum tamaense, an evergreen understorey herbaceous species.

Wada N, Kondo I, Tanaka R, Kishimoto J, Miyagi A, Kawai-Yamada M Ann Bot. 2022; 131(3):423-436.

PMID: 36579472 PMC: 10072104. DOI: 10.1093/aob/mcac156.


Functional differences in seasonally absorbed nitrogen in a winter-green perennial herb.

Nishitani S, Ishida A, Nakamura T, Kachi N R Soc Open Sci. 2020; 7(1):190034.

PMID: 32218923 PMC: 7029918. DOI: 10.1098/rsos.190034.


Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type.

Dumlao M, Darehshouri A, Cohu C, Muller O, Mathias J, Adams 3rd W Photosynth Res. 2012; 113(1-3):181-9.

PMID: 22791016 DOI: 10.1007/s11120-012-9762-5.


Comparison of light harvesting and resource allocation strategies between two rhizomatous herbaceous species inhabiting deciduous forests.

Ida T, Kudo G J Plant Res. 2009; 122(2):171-81.

PMID: 19156358 DOI: 10.1007/s10265-008-0212-6.


References
1.
Seemann J, Sharkey T, Wang J, Osmond C . Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiol. 1987; 84(3):796-802. PMC: 1056672. DOI: 10.1104/pp.84.3.796. View

2.
Yoshie F, Kawano S . Seasonal changes in photosynthetic characteristics of Pachysandra terminalis (Buxaceae), an evergreen woodland chamaephyte, in the cool temperate regions of Japan. Oecologia. 2017; 71(1):6-11. DOI: 10.1007/BF00377312. View

3.
Evans J . Photosynthesis and nitrogen relationships in leaves of C plants. Oecologia. 2017; 78(1):9-19. DOI: 10.1007/BF00377192. View

4.
Oberhuber W, Bauer H . Photoinhibition of photosynthesis under natural conditions in ivy (Hedera helix L.) growing in an understory of deciduous trees. Planta. 2013; 185(4):545-53. DOI: 10.1007/BF00202965. View

5.
Graves J . A model of the seasonal pattern of carbon acquisition in two woodland herbs, Mercurialis perennis L. and Geum urbanum L. Oecologia. 2017; 83(4):479-484. DOI: 10.1007/BF00317198. View