» Articles » PMID: 28303186

Incidence of in Aquatic Insects

Overview
Journal Ecol Evol
Date 2017 Mar 18
PMID 28303186
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

is a genus of intracellular bacteria typically found within the reproductive systems of insects that manipulates those systems of their hosts. While current estimates of incidence suggest that it infects approximately half of all arthropod species, these estimates are based almost entirely on terrestrial insects. No systematic survey of in aquatic insects has been performed. To estimate incidence among aquatic insect species, we combined field-collected samples from the Missouri River (251 samples from 58 species) with a global database from previously published surveys. The final database contained 5,598 samples of 2,687 total species (228 aquatic and 2,459 terrestrial). We estimate that 52% (95% CrIs: 44%-60%) of aquatic insect species carry , compared to 60% (58%-63%) of terrestrial insects. Among aquatic insects, infected orders included Odonata, Coleoptera, Trichoptera, Ephemeroptera, Diptera, Hemiptera, and Plecoptera. Incidence was highest within aquatic Diptera and Hemiptera (69%), Odonata (50%), and Coleoptera (53%), and was lowest within Ephemeroptera (13%). These results indicate that is common among aquatic insects, but incidence varies widely across orders and is especially uncertain in those orders with low sample sizes such as Ephemeroptera, Plecoptera, and Trichoptera.

Citing Articles

Intraspecific diversity of Myrmecophilus acervorum (Orthoptera: Myrmecophilidae) indicating an ongoing cryptic speciation.

Kaczmarczyk-Ziemba A, Wagner G, Staniec B, Zagaja M, Pietrykowska-Tudruj E, Iorgu E Sci Rep. 2024; 14(1):23984.

PMID: 39402267 PMC: 11473668. DOI: 10.1038/s41598-024-75335-y.


Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses.

Castelli M, Nardi T, Giovannini M, Sassera D Biol Lett. 2024; 20(9):20240310.

PMID: 39288812 PMC: 11496725. DOI: 10.1098/rsbl.2024.0310.


Wolbachia strain diversity in a complex group of sympatric cryptic parasitoid wasp species.

Valerio F, Martel C, Stefanescu C, van Nouhuys S, Kankare M, Duplouy A BMC Microbiol. 2024; 24(1):319.

PMID: 39223450 PMC: 11368008. DOI: 10.1186/s12866-024-03470-7.


Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria.

Konecka E, Szymkowiak P Sci Rep. 2024; 14(1):7486.

PMID: 38553514 PMC: 10980700. DOI: 10.1038/s41598-024-57701-y.


Historic Museum Samples Provide Evidence for a Recent Replacement of Wolbachia Types in European Drosophila melanogaster.

Strunov A, Kirchner S, Schindelar J, Kruckenhauser L, Haring E, Kapun M Mol Biol Evol. 2023; 40(12).

PMID: 37995370 PMC: 10701101. DOI: 10.1093/molbev/msad258.


References
1.
Pietri J, DeBruhl H, Sullivan W . The rich somatic life of Wolbachia. Microbiologyopen. 2016; 5(6):923-936. PMC: 5221451. DOI: 10.1002/mbo3.390. View

2.
Zug R, Hammerstein P . Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One. 2012; 7(6):e38544. PMC: 3369835. DOI: 10.1371/journal.pone.0038544. View

3.
Baldo L, Dunning Hotopp J, Jolley K, Bordenstein S, Biber S, Choudhury R . Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol. 2006; 72(11):7098-110. PMC: 1636189. DOI: 10.1128/AEM.00731-06. View

4.
Prakash B, Puttaraju H . Frequency of infection with A and B supergroup Wolbachia in insects and pests associated with mulberry and silkworm. J Biosci. 2007; 32(4):671-6. DOI: 10.1007/s12038-007-0067-3. View

5.
Beckmann J, Fallon A . Decapitation improves detection of Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera: Culicidae) mosquitoes by the polymerase chain reaction. J Med Entomol. 2012; 49(5):1103-8. PMC: 3546468. DOI: 10.1603/me12049. View