» Articles » PMID: 2829168

Chromatin Structure of Altered Yeast Centromeres

Overview
Specialty Science
Date 1988 Jan 1
PMID 2829168
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

We have investigated the chromatin structure of wild-type and mutationally altered centromere sequences in the yeast Saccharomyces cerevisiae by using an indirect end-labeling mapping strategy. Wild-type centromere DNA from chromosome III (CEN3) exhibits a nuclease-resistant chromatin structure 220-250 base pairs long, centered around the conserved centromere DNA element (CDE) III. A point mutation in CDE III that changes a central cytidine to a thymidine and completely disrupts centromere function has lost the chromatin conformation typically associated with the wild-type centromere. A second conserved DNA element, CDE I, is spatially separated from CDE III by 78-86 A + T-rich base pairs, which is termed CDE II. The sequence and spatial requirements for CDE II are less stringent; alterations in CDE II length and sequence can be tolerated to a limited extent. Nuclease-resistant cores are altered in dimension in two CDE II CEN3 mutations. Two CDE I deletion mutations that retain partial centromere function also show nuclease-resistant regions of reduced size and intensity. The results from a number of such altered centromeres indicate a correlation between the presence of a protected core and centromere function.

Citing Articles

High-resolution analysis of human centromeric chromatin.

Melters D, Bui M, Rakshit T, Grigoryev S, Sturgill D, Dalal Y Life Sci Alliance. 2025; 8(4.

PMID: 39848706 PMC: 11757159. DOI: 10.26508/lsa.202402819.


Epigenetic control of centromere: what can we learn from neocentromere?.

Kim T Genes Genomics. 2021; 44(3):317-325.

PMID: 34843088 DOI: 10.1007/s13258-021-01193-x.


Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.

He Y, Lawrimore J, Cook D, Van Gorder E, De Larimat S, Adalsteinsson D Nucleic Acids Res. 2020; 48(20):11284-11303.

PMID: 33080019 PMC: 7672462. DOI: 10.1093/nar/gkaa871.


Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis.

Lee P, Wei H, Tan D, Harrison S J Mol Biol. 2019; 431(22):4444-4454.

PMID: 31425683 PMC: 7004469. DOI: 10.1016/j.jmb.2019.08.003.


Point centromere activity requires an optimal level of centromeric noncoding RNA.

Ling Y, Yuen K Proc Natl Acad Sci U S A. 2019; 116(13):6270-6279.

PMID: 30850541 PMC: 6442628. DOI: 10.1073/pnas.1821384116.


References
1.
Wu C . The 5' ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980; 286(5776):854-60. DOI: 10.1038/286854a0. View

2.
Hill A, Bloom K . Genetic manipulation of centromere function. Mol Cell Biol. 1987; 7(7):2397-405. PMC: 365371. DOI: 10.1128/mcb.7.7.2397-2405.1987. View

3.
Fitzgerald-Hayes M, Clarke L, Carbon J . Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell. 1982; 29(1):235-44. DOI: 10.1016/0092-8674(82)90108-8. View

4.
Bloom K, Carbon J . Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 1982; 29(2):305-17. DOI: 10.1016/0092-8674(82)90147-7. View

5.
Stinchcomb D, Mann C, Davis R . Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol. 1982; 158(2):157-90. DOI: 10.1016/0022-2836(82)90427-2. View