» Articles » PMID: 28288103

Reproducibility of Computational Workflows is Automated Using Continuous Analysis

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2017 Mar 14
PMID 28288103
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

Replication, validation and extension of experiments are crucial for scientific progress. Computational experiments are scriptable and should be easy to reproduce. However, computational analyses are designed and run in a specific computing environment, which may be difficult or impossible to match using written instructions. We report the development of continuous analysis, a workflow that enables reproducible computational analyses. Continuous analysis combines Docker, a container technology akin to virtual machines, with continuous integration, a software development technique, to automatically rerun a computational analysis whenever updates or improvements are made to source code or data. This enables researchers to reproduce results without contacting the study authors. Continuous analysis allows reviewers, editors or readers to verify reproducibility without manually downloading and rerunning code and can provide an audit trail for analyses of data that cannot be shared.

Citing Articles

Multistage deep learning methods for automating radiographic sharp score prediction in rheumatoid arthritis.

Moradmand H, Ren L Sci Rep. 2025; 15(1):3391.

PMID: 39870749 PMC: 11772782. DOI: 10.1038/s41598-025-86073-0.


Ten challenges and opportunities in computational immuno-oncology.

Bao R, Hutson A, Madabhushi A, Jonsson V, Rosario S, Barnholtz-Sloan J J Immunother Cancer. 2024; 12(10).

PMID: 39461879 PMC: 11529678. DOI: 10.1136/jitc-2024-009721.


Systematic data analysis pipeline for quantitative morphological cell phenotyping.

Ghanegolmohammadi F, Eslami M, Ohya Y Comput Struct Biotechnol J. 2024; 23:2949-2962.

PMID: 39104709 PMC: 11298594. DOI: 10.1016/j.csbj.2024.07.012.


Systematic evaluation with practical guidelines for single-cell and spatially resolved transcriptomics data simulation under multiple scenarios.

Duo H, Li Y, Lan Y, Tao J, Yang Q, Xiao Y Genome Biol. 2024; 25(1):145.

PMID: 38831386 PMC: 11149245. DOI: 10.1186/s13059-024-03290-y.


DExplore: An Online Tool for Detecting Differentially Expressed Genes from mRNA Microarray Experiments.

Katsiki A, Karatzas P, De Lastic H, Georgakilas A, Tsitsilonis O, Vorgias C Biology (Basel). 2024; 13(5).

PMID: 38785833 PMC: 11117493. DOI: 10.3390/biology13050351.


References
1.
Bray N, Pimentel H, Melsted P, Pachter L . Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525-7. DOI: 10.1038/nbt.3519. View

2.
McNutt M . Reproducibility. Science. 2014; 343(6168):229. DOI: 10.1126/science.1250475. View

3.
Stodden V, McNutt M, Bailey D, Deelman E, Gil Y, Hanson B . Enhancing reproducibility for computational methods. Science. 2016; 354(6317):1240-1241. DOI: 10.1126/science.aah6168. View

4.
Ioannidis J, Allison D, Ball C, Coulibaly I, Cui X, Culhane A . Repeatability of published microarray gene expression analyses. Nat Genet. 2009; 41(2):149-55. DOI: 10.1038/ng.295. View

5.
Groves T, Godlee F . Open science and reproducible research. BMJ. 2012; 344:e4383. DOI: 10.1136/bmj.e4383. View