» Articles » PMID: 28281539

Extensive Translation of Circular RNAs Driven by N-methyladenosine

Overview
Journal Cell Res
Specialty Cell Biology
Date 2017 Mar 11
PMID 28281539
Citations 1004
Authors
Affiliations
Soon will be listed here.
Abstract

Extensive pre-mRNA back-splicing generates numerous circular RNAs (circRNAs) in human transcriptome. However, the biological functions of these circRNAs remain largely unclear. Here we report that N-methyladenosine (mA), the most abundant base modification of RNA, promotes efficient initiation of protein translation from circRNAs in human cells. We discover that consensus mA motifs are enriched in circRNAs and a single mA site is sufficient to drive translation initiation. This mA-driven translation requires initiation factor eIF4G2 and mA reader YTHDF3, and is enhanced by methyltransferase METTL3/14, inhibited by demethylase FTO, and upregulated upon heat shock. Further analyses through polysome profiling, computational prediction and mass spectrometry reveal that mA-driven translation of circRNAs is widespread, with hundreds of endogenous circRNAs having translation potential. Our study expands the coding landscape of human transcriptome, and suggests a role of circRNA-derived proteins in cellular responses to environmental stress.

Citing Articles

Effects of circulating RNAs on tumor metabolism in lung cancer (Review).

Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G Oncol Lett. 2025; 29(4):204.

PMID: 40070786 PMC: 11894507. DOI: 10.3892/ol.2025.14950.


Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery.

Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H Exploration (Beijing). 2025; 5(1):20230165.

PMID: 40040830 PMC: 11875455. DOI: 10.1002/EXP.20230165.


Coding circular RNA in human cancer.

Lin Y, Wang Y, Li L, Zhang K Genes Dis. 2025; 12(3):101347.

PMID: 40034125 PMC: 11875173. DOI: 10.1016/j.gendis.2024.101347.


RNA vaccines: The dawn of a new age for tuberculosis?.

Li J, Liu D, Li X, Wei J, Du W, Zhao A Hum Vaccin Immunother. 2025; 21(1):2469333.

PMID: 40013818 PMC: 11869779. DOI: 10.1080/21645515.2025.2469333.


Landscape of Noncoding RNA in the Hypoxic Tumor Microenvironment.

Gong L, Zou C, Zhang H, Yang F, Qi G, Ma Z Genes (Basel). 2025; 16(2).

PMID: 40004471 PMC: 11855738. DOI: 10.3390/genes16020140.


References
1.
Wang X, Zhao B, Roundtree I, Lu Z, Han D, Ma H . N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015; 161(6):1388-99. PMC: 4825696. DOI: 10.1016/j.cell.2015.05.014. View

2.
Linder B, Grozhik A, Olarerin-George A, Meydan C, Mason C, Jaffrey S . Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015; 12(8):767-72. PMC: 4487409. DOI: 10.1038/nmeth.3453. View

3.
Shi H, Wang X, Lu Z, Zhao B, Ma H, Hsu P . YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA. Cell Res. 2017; 27(3):315-328. PMC: 5339834. DOI: 10.1038/cr.2017.15. View

4.
Nigro J, Cho K, Fearon E, Kern S, Ruppert J, Oliner J . Scrambled exons. Cell. 1991; 64(3):607-13. DOI: 10.1016/0092-8674(91)90244-s. View

5.
Wan J, Qian S . TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 2013; 42(Database issue):D845-50. PMC: 3965020. DOI: 10.1093/nar/gkt1085. View