» Articles » PMID: 28261521

Three-dimensional Microstructure of Human Alveolar Trabecular Bone: a Micro-computed Tomography Study

Overview
Specialty Dentistry
Date 2017 Mar 7
PMID 28261521
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: The microstructural characteristics of trabecular bone were identified using micro-computed tomography (micro-CT), in order to develop a potential strategy for implant surface improvement to facilitate osseointegration.

Methods: Alveolar bone specimens from the cadavers of 30 humans were scanned by high-resolution micro-CT and reconstructed. Volumes of interest chosen within the jaw were classified according to Hounsfield units into 4 bone quality categories. Several structural parameters were measured and statistically analyzed.

Results: Alveolar bone specimens with D1 bone quality had significantly higher values for all structural parameters than the other bone quality categories, except for trabecular thickness (Tb.Th). The percentage of bone volume, trabecular separation (Tb.Sp), and trabecular number (Tb.N) varied significantly among bone quality categories. Tb.Sp varied markedly across the bone quality categories (D1: 0.59±0.22 mm, D4: 1.20±0.48 mm), whereas Tb.Th had similar values (D1: 0.30±0.08 mm, D4: 0.22±0.05 mm).

Conclusions: Bone quality depended on Tb.Sp and number-that is, endosteal space architecture-rather than bone surface and Tb.Th. Regardless of bone quality, Tb.Th showed little variation. These factors should be taken into account when developing individualized implant surface topographies.

Citing Articles

Primary Stability of Dental Implants in Human Jawbones: Experiments & FE Analyses.

Wili P, Rauber C, Saade A, Bliggenstorfer S, Ramirez-Garmendia V, Schweizer R Clin Oral Implants Res. 2024; 36(3):339-352.

PMID: 39670698 PMC: 11891032. DOI: 10.1111/clr.14386.


Effect of different implant positions for two implant-retained mandibular overdenture: a retrospective 5-years radiographic evaluation of the circumferential peri-implant bone loss and posterior ridge resorptive changes.

Mourad K, Emera R, Habib A BMC Oral Health. 2024; 24(1):1161.

PMID: 39350107 PMC: 11443777. DOI: 10.1186/s12903-024-04871-w.


Trabecular bone microstructure parameters as predictors for chronological age: a systematic review.

Tabassum A, Chainchel Singh M, Ibrahim N, Sanjeevan V, Mohd Yusof M Forensic Sci Med Pathol. 2024; .

PMID: 39098862 DOI: 10.1007/s12024-024-00864-x.


Dual-energy computed tomography and micro-computed tomography for assessing bone regeneration in a rabbit tibia model.

Su D, Wu Y, Yang S, Ma D, Zhang H, Ma Y Sci Rep. 2024; 14(1):5967.

PMID: 38472263 PMC: 10933353. DOI: 10.1038/s41598-024-56199-8.


Tailoring the Microarchitectures of 3D Printed Bone-like Scaffolds for Tissue Engineering Applications.

Zenobi E, Merco M, Mochi F, Ruspi J, Pecci R, Marchese R Bioengineering (Basel). 2023; 10(5).

PMID: 37237637 PMC: 10215619. DOI: 10.3390/bioengineering10050567.


References
1.
Park Y, Kim S, Oh S, Park H, Lee S, Kim T . Comparison of alveolar ridge preservation methods using three-dimensional micro-computed tomographic analysis and two-dimensional histometric evaluation. Imaging Sci Dent. 2014; 44(2):143-8. PMC: 4061298. DOI: 10.5624/isd.2014.44.2.143. View

2.
Drago C . Rates of osseointegration of dental implants with regard to anatomical location. J Prosthodont. 1992; 1(1):29-31. DOI: 10.1111/j.1532-849x.1992.tb00423.x. View

3.
Jemt T, Lekholm U . Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report. Int J Oral Maxillofac Implants. 1993; 8(6):635-40. View

4.
Borden M, Attawia M, Khan Y, Laurencin C . Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002; 23(2):551-9. DOI: 10.1016/s0142-9612(01)00137-5. View

5.
Norton M, Gamble C . Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res. 2001; 12(1):79-84. DOI: 10.1034/j.1600-0501.2001.012001079.x. View