» Articles » PMID: 28257001

Origin and Evolution of Transporter Substrate Specificity Within the NPF Family

Overview
Journal Elife
Specialty Biology
Date 2017 Mar 4
PMID 28257001
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the . Biochemical characterization of orthologs along the phylogenetic lineage from cassava to suggests that alterations in the electrogenicity of the transporters accompanied changes in substrate specificity. Linking the evolutionary path of transporter substrate specificities to that of the biosynthetic pathways, exemplify how transporter substrate specificities originate and evolve as new biosynthesis pathways emerge.

Citing Articles

Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review.

Manikandan A, Muthusamy S, Wang E, Ivarson E, Manickam S, Sivakami R Front Plant Sci. 2024; 15:1468675.

PMID: 39588088 PMC: 11586226. DOI: 10.3389/fpls.2024.1468675.


Dhurrin in Sorghum: Biosynthesis, Regulation, Biological Function and Challenges for Animal Production.

Wang B, Xiong W, Guo Y Plants (Basel). 2024; 13(16).

PMID: 39204727 PMC: 11359004. DOI: 10.3390/plants13162291.


Polyploids of Brassicaceae: Genomic Insights and Assembly Strategies.

Jeon D, Kim C Plants (Basel). 2024; 13(15).

PMID: 39124204 PMC: 11314605. DOI: 10.3390/plants13152087.


Fitness landscape of substrate-adaptive mutations in evolved amino acid-polyamine-organocation transporters.

Karapanagioti F, Atlason U, Slotboom D, Poolman B, Obermaier S Elife. 2024; 13.

PMID: 38916596 PMC: 11198987. DOI: 10.7554/eLife.93971.


Deciphering the Diversity in Bacterial Transporters That Salvage Queuosine Precursors.

Quaiyum S, Yuan Y, Kuipers P, Martinelli M, Jaroch M, de Crecy-Lagard V Epigenomes. 2024; 8(2.

PMID: 38804365 PMC: 11130926. DOI: 10.3390/epigenomes8020016.


References
1.
Sun J, Bankston J, Payandeh J, Hinds T, Zagotta W, Zheng N . Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature. 2014; 507(7490):73-7. PMC: 3968801. DOI: 10.1038/nature13074. View

2.
Stamatakis A . RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9):1312-3. PMC: 3998144. DOI: 10.1093/bioinformatics/btu033. View

3.
Mithen R, Bennett R, Marquez J . Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry. 2010; 71(17-18):2074-86. DOI: 10.1016/j.phytochem.2010.09.017. View

4.
Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M . A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science. 2008; 323(5910):101-6. DOI: 10.1126/science.1163732. View

5.
Chiang C, Stacey G, Tsay Y . Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem. 2004; 279(29):30150-7. DOI: 10.1074/jbc.M405192200. View