» Articles » PMID: 28256738

Dielectrophoresis Assisted Loading and Unloading of Microwells for Impedance Spectroscopy

Overview
Journal Electrophoresis
Specialty Chemistry
Date 2017 Mar 4
PMID 28256738
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Dielectric spectroscopy (DS) is a noninvasive, label-free, fast, and promising technique for measuring dielectric properties of biological cells in real time. We demonstrate a microchip that consists of electro-activated microwell arrays for positive dielectrophoresis assisted cell capture, DS measurements, and negative dielectrophoresis driven cell unloading; thus, providing a high-throughput cell analysis platform. To the best of our knowledge, this is the first microfluidic chip that combines electro-activated microwells and DS to analyze biological cells. Device performance is tested using Saccharomyces cerevisiae (yeast) cells. DEP response of yeast cells is determined by measuring their Clausius-Mossotti factor using biophysical models in parallel plate microelectrode geometry. This information is used to determine the excitation frequency to load and unload wells. Effect of yeast cells on the measured impedance spectrum was examined both experimentally and numerically. Good match between the numerical and experimental results establishes the potential use of the microchip device for extracting subcellular properties of biological cells in a rapid and nonexpensive manner.

Citing Articles

Changes in Electrical Capacitance of Cell Membrane Reflect Drug Partitioning-Induced Alterations in Lipid Bilayer.

Bakhtiari S, Manshadi M, Candas M, Beskok A Micromachines (Basel). 2023; 14(2).

PMID: 36838014 PMC: 9961635. DOI: 10.3390/mi14020316.


A Microfluidic Dielectric Spectroscopy System for Characterization of Biological Cells in Physiological Media.

Bakhtiari S, Manshadi M, Mansoorifar A, Beskok A Sensors (Basel). 2022; 22(2).

PMID: 35062423 PMC: 8779508. DOI: 10.3390/s22020463.


Highly Efficient Capture and Quantification of the Airborne Fungal Pathogen Employing a Nanoelectrode-Activated Microwell Array.

Duarte P, Menze L, Shoute L, Zeng J, Savchenko O, Lyu J ACS Omega. 2022; 7(1):459-468.

PMID: 35036715 PMC: 8756577. DOI: 10.1021/acsomega.1c04878.


Dynamically controlled dielectrophoresis using resonant tuning.

Padhy P, Zaman M, Jensen M, Hesselink L Electrophoresis. 2021; 42(9-10):1079-1092.

PMID: 33599974 PMC: 8122061. DOI: 10.1002/elps.202000328.


A Multiwell Microfluidic Device for Analyzing and Screening Nonhormonal Contraceptive Agents.

Li H, Garner T, Diaz F, Wong P Small. 2019; 15(28):e1901910.

PMID: 31162807 PMC: 8996375. DOI: 10.1002/smll.201901910.

References
1.
Madiyar F, Syed L, Culbertson C, Li J . Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays. Electrophoresis. 2013; 34(7):1123-30. PMC: 3754441. DOI: 10.1002/elps.201200486. View

2.
Arai F, Ng C, Maruyama H, Ichikawa A, El-Shimy H, Fukuda T . On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab Chip. 2005; 5(12):1399-403. DOI: 10.1039/b502546j. View

3.
Chung J, Kim Y, Yoon E . Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett. 2011; 98(12):123701. PMC: 3112185. DOI: 10.1063/1.3565236. View

4.
Yoshimura Y, Tomita M, Mizutani F, Yasukawa T . Cell pairing using microwell array electrodes based on dielectrophoresis. Anal Chem. 2014; 86(14):6818-22. DOI: 10.1021/ac5015996. View

5.
Valero A, Braschler T, Renaud P . A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab Chip. 2010; 10(17):2216-25. DOI: 10.1039/c003982a. View