» Articles » PMID: 28231017

Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2017 Feb 24
PMID 28231017
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of core-shell nanowires to overcome existing limitations of heterostructures is one of the key ingredients for the design of next generation devices. This requires a detailed understanding of the mechanism for strain relaxation in these systems in order to eliminate strain-induced defect formation and thus to boost important electronic properties such as carrier mobility. Here we demonstrate how the hole mobility of [110]-oriented Ge-Si core-shell nanowires can be substantially enhanced thanks to the realization of large band offset and coherent strain in the system, reaching values as high as 4200 cm/(Vs) at 4 K and 1600 cm/(Vs) at room temperature for high hole densities of 10 cm. We present a direct correlation of (i) mobility, (ii) crystal direction, (iii) diameter, and (iv) coherent strain, all of which are extracted in our work for individual nanowires. Our results imply [110]-oriented Ge-Si core-shell nanowires as a promising candidate for future electronic and quantum transport devices.

Citing Articles

Coherent Control of a Few-Channel Hole Type Gatemon Qubit.

Zheng H, Cheung L, Sangwan N, Kononov A, Haller R, Ridderbos J Nano Lett. 2024; .

PMID: 38848282 PMC: 11194827. DOI: 10.1021/acs.nanolett.4c00770.


Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain.

Yang L, Yue S, Tao Y, Qiao S, Li H, Dai Z Nature. 2024; 629(8014):1021-1026.

PMID: 38750362 DOI: 10.1038/s41586-024-07390-4.


Electronic Transport and Quantum Phenomena in Nanowires.

Badawy G, Bakkers E Chem Rev. 2024; 124(5):2419-2440.

PMID: 38394689 PMC: 10941195. DOI: 10.1021/acs.chemrev.3c00656.


Control of Ge island coalescence for the formation of nanowires on silicon.

Ramanandan S, Rene Sapera J, Morelle A, Marti-Sanchez S, Rudra A, Arbiol J Nanoscale Horiz. 2024; 9(4):555-565.

PMID: 38353654 PMC: 10962639. DOI: 10.1039/d3nh00573a.


Influence of Different Carrier Gases, Temperature, and Partial Pressure on Growth Dynamics of Ge and Si Nanowires.

Forrer N, Nigro A, Gadea G, Zardo I Nanomaterials (Basel). 2023; 13(21).

PMID: 37947724 PMC: 10650493. DOI: 10.3390/nano13212879.


References
1.
Dayeh S, Tang W, Boioli F, Kavanagh K, Zheng H, Wang J . Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett. 2012; 13(5):1869-76. DOI: 10.1021/nl3022434. View

2.
Conesa-Boj S, Boioli F, Russo-Averchi E, Dunand S, Heiss M, Ruffer D . Plastic and elastic strain fields in GaAs/Si core-shell nanowires. Nano Lett. 2014; 14(4):1859-64. DOI: 10.1021/nl4046312. View

3.
Goldthorpe I, Marshall A, McIntyre P . Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett. 2008; 8(11):4081-6. DOI: 10.1021/nl802408y. View

4.
Xiang J, Vidan A, Tinkham M, Westervelt R, Lieber C . Ge/Si nanowire mesoscopic Josephson junctions. Nat Nanotechnol. 2008; 1(3):208-13. DOI: 10.1038/nnano.2006.140. View

5.
Liang G, Xiang J, Kharche N, Klimeck G, Lieber C, Lundstrom M . Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. Nano Lett. 2007; 7(3):642-6. DOI: 10.1021/nl062596f. View