» Articles » PMID: 28225794

A High-speed Brain-computer Interface (BCI) Using Dry EEG Electrodes

Overview
Journal PLoS One
Date 2017 Feb 23
PMID 28225794
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals, the application of gel-based EEG is time-consuming and cumbersome. In order to achieve a more user-friendly system, this work explores the usability of dry EEG electrodes with a VEP-based BCI. While the results show a high variability between subjects, they also show that communication speeds of more than 100 bit/min are possible using dry EEG electrodes. To reduce performance variability and deal with the lower signal-to-noise ratio of the dry EEG electrodes, an averaging method and a dynamic stopping method were introduced to the BCI system. Those changes were shown to improve performance significantly, leading to an average classification accuracy of 76% with an average communication speed of 46 bit/min, which is equivalent to a writing speed of 8.8 error-free letters per minute. Although the BCI system works substantially better with gel-based EEG, dry EEG electrodes are more user-friendly and still allow high-speed BCI communication.

Citing Articles

Response coupling with an auxiliary neural signal for enhancing brain signal detection.

Gupta E, Sivakumar R Sci Rep. 2025; 15(1):6227.

PMID: 39979351 PMC: 11842634. DOI: 10.1038/s41598-025-87414-9.


A Bayesian dynamic stopping method for evoked response brain-computer interfacing.

Ahmadi S, Desain P, Thielen J Front Hum Neurosci. 2025; 18():1437965.

PMID: 39776784 PMC: 11703970. DOI: 10.3389/fnhum.2024.1437965.


BCI-Utility Metric for Asynchronous P300 Brain-Computer Interface Systems.

Ma G, Kang J, Thompson D, Huggins J IEEE Trans Neural Syst Rehabil Eng. 2023; 31:3968-3977.

PMID: 37792654 PMC: 10681042. DOI: 10.1109/TNSRE.2023.3322125.


Flower electrodes for comfortable dry electroencephalography.

Warsito I, Komosar M, Bernhard M, Fiedler P, Haueisen J Sci Rep. 2023; 13(1):16589.

PMID: 37789022 PMC: 10547758. DOI: 10.1038/s41598-023-42732-8.


What External Variables Affect Sensorimotor Rhythm Brain-Computer Interface (SMR-BCI) Performance?.

Horowitz A, Guger C, Korostenskaja M HCA Healthc J Med. 2023; 2(3):143-162.

PMID: 37427002 PMC: 10324824. DOI: 10.36518/2689-0216.1188.


References
1.
Chi Y, Wang Y, Wang Y, Maier C, Jung T, Cauwenberghs G . Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2011; 20(2):228-35. DOI: 10.1109/TNSRE.2011.2174652. View

2.
Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T . Performance of the Emotiv Epoc headset for P300-based applications. Biomed Eng Online. 2013; 12:56. PMC: 3710229. DOI: 10.1186/1475-925X-12-56. View

3.
Farwell L, Donchin E . Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol. 1988; 70(6):510-23. DOI: 10.1016/0013-4694(88)90149-6. View

4.
Wolpaw J, Birbaumer N, McFarland D, Pfurtscheller G, Vaughan T . Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002; 113(6):767-91. DOI: 10.1016/s1388-2457(02)00057-3. View

5.
Zander T, Lehne M, Ihme K, Jatzev S, Correia J, Kothe C . A Dry EEG-System for Scientific Research and Brain-Computer Interfaces. Front Neurosci. 2011; 5:53. PMC: 3103872. DOI: 10.3389/fnins.2011.00053. View