» Articles » PMID: 28214511

Identification of a Degradation Signal Sequence Within Substrates of the Mitochondrial I-AAA Protease

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2017 Feb 20
PMID 28214511
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate.

Citing Articles

The lowdown on breakdown: Open questions in plant proteolysis.

Eckardt N, Avin-Wittenberg T, Bassham D, Chen P, Chen Q, Fang J Plant Cell. 2024; 36(9):2931-2975.

PMID: 38980154 PMC: 11371169. DOI: 10.1093/plcell/koae193.


AAA+ proteases: the first line of defense against mitochondrial damage.

Pareek G PeerJ. 2022; 10:e14350.

PMID: 36389399 PMC: 9648348. DOI: 10.7717/peerj.14350.


Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants.

Ghifari A, Murcha M Biochem Soc Trans. 2022; 50(3):1119-1132.

PMID: 35587610 PMC: 9246333. DOI: 10.1042/BST20220195.


Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction.

Wang L, Myasnikov A, Pan X, Walter P Elife. 2020; 9.

PMID: 31999255 PMC: 7018516. DOI: 10.7554/eLife.54031.


Proteolytic Control of Lipid Metabolism.

Sam P, Avery E, Claypool S ACS Chem Biol. 2019; 14(11):2406-2423.

PMID: 31503446 PMC: 6989095. DOI: 10.1021/acschembio.9b00695.


References
1.
Donzeau M, Kaldi K, Adam A, Paschen S, Wanner G, Guiard B . Tim23 links the inner and outer mitochondrial membranes. Cell. 2000; 101(4):401-12. DOI: 10.1016/s0092-8674(00)80850-8. View

2.
Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N . Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 2008; 9(1):42-9. PMC: 2246611. DOI: 10.1038/sj.embor.7401126. View

3.
Calvo S, Clauser K, Mootha V . MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2015; 44(D1):D1251-7. PMC: 4702768. DOI: 10.1093/nar/gkv1003. View

4.
Flynn J, Levchenko I, Seidel M, Wickner S, Sauer R, Baker T . Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A. 2001; 98(19):10584-9. PMC: 58509. DOI: 10.1073/pnas.191375298. View

5.
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer H . The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A. 2003; 100(23):13207-12. PMC: 263752. DOI: 10.1073/pnas.2135385100. View