» Articles » PMID: 28211462

Zebrafish Tracking Using Convolutional Neural Networks

Overview
Journal Sci Rep
Specialty Science
Date 2017 Feb 18
PMID 28211462
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

Citing Articles

Zebrafish identification with deep CNN and ViT architectures using a rolling training window.

Puchalla J, Serianni A, Deng B Sci Rep. 2025; 15(1):8580.

PMID: 40074729 PMC: 11903894. DOI: 10.1038/s41598-025-86351-x.


Unlocking the Potential of Zebrafish Research with Artificial Intelligence: Advancements in Tracking, Processing, and Visualization.

Fan Y, Hsu F, Wang Y, Liao L Med Biol Eng Comput. 2023; 61(11):2797-2814.

PMID: 37558927 DOI: 10.1007/s11517-023-02903-1.


Multi-Object Tracking in Heterogeneous environments (MOTHe) for animal video recordings.

Rathore A, Sharma A, Shah S, Sharma N, Torney C, Guttal V PeerJ. 2023; 11:e15573.

PMID: 37397020 PMC: 10309051. DOI: 10.7717/peerj.15573.


CATER: Combined Animal Tracking & Environment Reconstruction.

Haalck L, Mangan M, Wystrach A, Clement L, Webb B, Risse B Sci Adv. 2023; 9(16):eadg2094.

PMID: 37083522 PMC: 10121171. DOI: 10.1126/sciadv.adg2094.


A Mini-Review Regarding the Modalities to Study Neurodevelopmental Disorders-Like Impairments in Zebrafish-Focussing on Neurobehavioural and Psychological Responses.

Curpan A, Balmus I, Dobrin R, Ciobica A, Chele G, Gorgan D Brain Sci. 2022; 12(9).

PMID: 36138883 PMC: 9496774. DOI: 10.3390/brainsci12091147.


References
1.
Branson K . Distinguishing seemingly indistinguishable animals with computer vision. Nat Methods. 2014; 11(7):721-2. DOI: 10.1038/nmeth.3004. View

2.
Fan J, Xu W, Wu Y, Gong Y . Human tracking using convolutional neural networks. IEEE Trans Neural Netw. 2010; 21(10):1610-23. DOI: 10.1109/TNN.2010.2066286. View

3.
Perez-Escudero A, Vicente-Page J, Hinz R, Arganda S, de Polavieja G . idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014; 11(7):743-8. DOI: 10.1038/nmeth.2994. View

4.
Dell A, Bender J, Branson K, Couzin I, de Polavieja G, Noldus L . Automated image-based tracking and its application in ecology. Trends Ecol Evol. 2014; 29(7):417-28. DOI: 10.1016/j.tree.2014.05.004. View

5.
Qian Z, Cheng X, Chen Y . Automatically detect and track multiple fish swimming in shallow water with frequent occlusion. PLoS One. 2014; 9(9):e106506. PMC: 4160317. DOI: 10.1371/journal.pone.0106506. View