» Articles » PMID: 28209797

Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis

Overview
Journal Circ Res
Date 2017 Feb 18
PMID 28209797
Citations 561
Authors
Affiliations
Soon will be listed here.
Abstract

Major reactive oxygen species (ROS)-producing systems in vascular wall include NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase, xanthine oxidase, the mitochondrial electron transport chain, and uncoupled endothelial nitric oxide (NO) synthase. ROS at moderate concentrations have important signaling roles under physiological conditions. Excessive or sustained ROS production, however, when exceeding the available antioxidant defense systems, leads to oxidative stress. Animal studies have provided compelling evidence demonstrating the roles of vascular oxidative stress and NO in atherosclerosis. All established cardiovascular risk factors such as hypercholesterolemia, hypertension, diabetes mellitus, and smoking enhance ROS generation and decrease endothelial NO production. Key molecular events in atherogenesis such as oxidative modification of lipoproteins and phospholipids, endothelial cell activation, and macrophage infiltration/activation are facilitated by vascular oxidative stress and inhibited by endothelial NO. Atherosclerosis develops preferentially in vascular regions with disturbed blood flow (arches, branches, and bifurcations). The fact that these sites are associated with enhanced oxidative stress and reduced endothelial NO production is a further indication for the roles of ROS and NO in atherosclerosis. Therefore, prevention of vascular oxidative stress and improvement of endothelial NO production represent reasonable therapeutic strategies in addition to the treatment of established risk factors (hypercholesterolemia, hypertension, and diabetes mellitus).

Citing Articles

Endothelial Homeostasis Under the Influence of Alcohol-Relevance to Atherosclerotic Cardiovascular Disease.

Gusti Y, Liu W, Athar F, Cahill P, Redmond E Nutrients. 2025; 17(5).

PMID: 40077672 PMC: 11901717. DOI: 10.3390/nu17050802.


Immune and Non-immune Interactions in the Pathogenesis of Androgenetic Alopecia.

Xiao Y, Zhang Y, Deng S, Yang X, Yao X Clin Rev Allergy Immunol. 2025; 68(1):22.

PMID: 40024940 DOI: 10.1007/s12016-025-09034-5.


Application of Nanomaterials in Early Imaging and Advanced Treatment of Atherosclerosis.

Zhou Q, Wang Y, Si G, Chen X, Mu D, Zhang B Chem Biomed Imaging. 2025; 3(2):51-76.

PMID: 40018650 PMC: 11863161. DOI: 10.1021/cbmi.4c00064.


Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers.

Li S, Yuan H, Li L, Li Q, Lin P, Li K Antioxidants (Basel). 2025; 14(2).

PMID: 40002387 PMC: 11851681. DOI: 10.3390/antiox14020201.


Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases.

Wang A, Avina A, Liu Y, Chang Y, Kao H Antioxidants (Basel). 2025; 14(2).

PMID: 40002370 PMC: 11851694. DOI: 10.3390/antiox14020183.