Increased Oxidative Stress Alters Nucleosides Metabolite Levels in Sickle Cell Anemia
Overview
Biology
Endocrinology
Authors
Affiliations
Objectives: This study was conducted to assess the markers of oxidative stress, myeloperoxidase (MPO), acetylcholinesterase (AChE) and xanthine oxidase (XO) activities as well as the levels of nucleotide metabolites in sickle cell anemia (SCA) patients.
Methods: Fifteen SCA treated patients and 30 health subjects (control group) were selected. The markers of oxidative stress (levels of reactive oxygen species (ROS), plasma proteins, carbonyl content, lipid peroxidation (TBARS), total thiols (T-SH), glutathione and catalase activity), MPO, AChE and XO activities as well as the levels of nucleotide metabolites were measured in SCA patients.
Results: ROS, thiobarbituric acid-reactive substances (TBARS) and T-SH levels as well as the activities of catalase and MPO were significantly increased while glutathione level was reduced in SCA patients. Furthermore, a significant (P < 0.001) increase in hypoxanthine level was demonstrated in SCA patients. However, the serum levels for xanthine (P < 0.01) and uric acid (P < 0.001) were decreased in SCA patients. A significant (P < 0.001) decrease in XO activity was detected in SCA patients.
Discussion: The altered parameters in SCA patients suggest that the generation and impairment of oxidative stress in this disease as well as antioxidant markers are contributory factors towards cellular redox homeostasis and alteration of purine metabolites.
Association between composite dietary antioxidant indices and anemia: NHANES 2003-2018.
Wu Q, Wang Z, Xia J, Xu H, Huang G, Feng G PLoS One. 2025; 20(1):e0316397.
PMID: 39746109 PMC: 11694997. DOI: 10.1371/journal.pone.0316397.
Silva M, Faustino P Antioxidants (Basel). 2023; 12(11).
PMID: 38001830 PMC: 10669666. DOI: 10.3390/antiox12111977.
Hounkpe B, Chenou F, Domingos I, Cardoso E, Sobreira M, Araujo A Res Pract Thromb Haemost. 2021; 5(1):204-210.
PMID: 33537545 PMC: 7845058. DOI: 10.1002/rth2.12463.
Tall F, Martin C, Ndour E, Faes C, Ly I, Pialoux V Antioxidants (Basel). 2020; 9(9).
PMID: 32937882 PMC: 7555380. DOI: 10.3390/antiox9090863.
Redox Signaling in Sickle Cell Disease.
Nolfi-Donegan D, Pradhan-Sundd T, Pritchard Jr K, Hillery C Curr Opin Physiol. 2019; 9:26-33.
PMID: 31240269 PMC: 6592428. DOI: 10.1016/j.cophys.2019.04.022.