» Articles » PMID: 28170126

Chelator-Free Radiolabeling of Nanographene: Breaking the Stereotype of Chelation

Overview
Specialty Chemistry
Date 2017 Feb 8
PMID 28170126
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Macrocyclic chelators have been widely employed in the realm of nanoparticle-based positron emission tomography (PET) imaging, whereas its accuracy remains questionable. Here, we found that Cu can be intrinsically labeled onto nanographene based on interactions between Cu and the π electrons of graphene without the need of chelator conjugation, providing a promising alternative radiolabeling approach that maintains the native in vivo pharmacokinetics of the nanoparticles. Due to abundant π bonds, reduced graphene oxide (RGO) exhibited significantly higher labeling efficiency in comparison with graphene oxide (GO) and exhibited excellent radiostability in vivo. More importantly, nonspecific attachment of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) on nanographene was observed, which revealed that chelator-mediated nanoparticle-based PET imaging has its inherent drawbacks and can possibly lead to erroneous imaging results in vivo.

Citing Articles

Approaches to Nanoparticle Labeling: A Review of Fluorescent, Radiological, and Metallic Techniques.

Chen H, Hu Q, Li W, Cai X, Mao L, Li R Environ Health (Wash). 2024; 1(2):75-89.

PMID: 39473584 PMC: 11504608. DOI: 10.1021/envhealth.3c00034.


Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine.

Gao Y, Wang X, Fan C iScience. 2024; 27(7):110214.

PMID: 39040049 PMC: 11261022. DOI: 10.1016/j.isci.2024.110214.


Methods for Radiolabelling Nanoparticles: PET Use (Part 2).

Bentivoglio V, Varani M, Lauri C, Ranieri D, Signore A Biomolecules. 2022; 12(10).

PMID: 36291726 PMC: 9599877. DOI: 10.3390/biom12101517.


Nanotheranostics for Image-Guided Cancer Treatment.

Dennahy I, Han Z, MacCuaig W, Chalfant H, Condacse A, Hagood J Pharmaceutics. 2022; 14(5).

PMID: 35631503 PMC: 9144228. DOI: 10.3390/pharmaceutics14050917.


Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering.

Ranasinghe J, Jain A, Wu W, Zhang K, Wang Z, Huang S J Mater Res. 2022; 37(10):1689-1713.

PMID: 35615304 PMC: 9122553. DOI: 10.1557/s43578-022-00591-5.


References
1.
Goel S, Chen F, Ehlerding E, Cai W . Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small. 2014; 10(19):3825-30. PMC: 4191998. DOI: 10.1002/smll.201401048. View

2.
Zhang Y, Jeon M, Rich L, Hong H, Geng J, Zhang Y . Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014; 9(8):631-8. PMC: 4130353. DOI: 10.1038/nnano.2014.130. View

3.
Zhang Y, Hong H, Engle J, Bean J, Yang Y, Leigh B . Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal antibody: NOTA is superior to DOTA. PLoS One. 2011; 6(12):e28005. PMC: 3235104. DOI: 10.1371/journal.pone.0028005. View

4.
Hong H, Yang K, Zhang Y, Engle J, Feng L, Yang Y . In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 2012; 6(3):2361-70. PMC: 3314116. DOI: 10.1021/nn204625e. View

5.
Blanco E, Shen H, Ferrari M . Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015; 33(9):941-51. PMC: 4978509. DOI: 10.1038/nbt.3330. View