» Articles » PMID: 28166228

Rapid Turnover of DnaA at Replication Origin Regions Contributes to Initiation Control of DNA Replication

Overview
Journal PLoS Genet
Specialty Genetics
Date 2017 Feb 7
PMID 28166228
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

DnaA is a conserved key regulator of replication initiation in bacteria, and is homologous to ORC proteins in archaea and in eukaryotic cells. The ATPase binds to several high affinity binding sites at the origin region and upon an unknown molecular trigger, spreads to several adjacent sites, inducing the formation of a helical super structure leading to initiation of replication. Using FRAP analysis of a functional YFP-DnaA allele in Bacillus subtilis, we show that DnaA is bound to oriC with a half-time of 2.5 seconds. DnaA shows similarly high turnover at the replication machinery, where DnaA is bound to DNA polymerase via YabA. The absence of YabA increases the half time binding of DnaA at oriC, showing that YabA plays a dual role in the regulation of DnaA, as a tether at the replication forks, and as a chaser at origin regions. Likewise, a deletion of soj (encoding a ParA protein) leads to an increase in residence time and to overinitiation, while a mutation in DnaA that leads to lowered initiation frequency, due to a reduced ATPase activity, shows a decreased residence time on binding sites. Finally, our single molecule tracking experiments show that DnaA rapidly moves between chromosomal binding sites, and does not arrest for more than few hundreds of milliseconds. In Escherichia coli, DnaA also shows low residence times in the range of 200 ms and oscillates between spatially opposite chromosome regions in a time frame of one to two seconds, independently of ongoing transcription. Thus, DnaA shows extremely rapid binding turnover on the chromosome including oriC regions in two bacterial species, which is influenced by Soj and YabA proteins in B. subtilis, and is crucial for balanced initiation control, likely preventing fatal premature multimerization and strand opening of DnaA at oriC.

Citing Articles

Relative Distribution of DnaA and DNA in Cells as a Factor of Their Phenotypic Variability.

Namboodiri S, Aranovich A, Hadad U, Gheber L, Feingold M, Fishov I Int J Mol Sci. 2025; 26(2).

PMID: 39859179 PMC: 11765206. DOI: 10.3390/ijms26020464.


Dynamics of cell wall-binding proteins at a single molecule level: autolysins show different kinds of motion.

Fiedler S, Graumann P Mol Biol Cell. 2024; 35(4):ar55.

PMID: 38381561 PMC: 11064672. DOI: 10.1091/mbc.E23-10-0387.


Protein secretion zones during overexpression of amylase within the Gram-positive cell wall.

Strach M, Koch F, Fiedler S, Liebeton K, Graumann P BMC Biol. 2023; 21(1):206.

PMID: 37794427 PMC: 10552229. DOI: 10.1186/s12915-023-01684-1.


Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages.

Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A FEMS Microbiol Rev. 2023; 47(4).

PMID: 37533212 PMC: 10465088. DOI: 10.1093/femsre/fuad044.


Robust replication initiation from coupled homeostatic mechanisms.

Berger M, Wolde P Nat Commun. 2022; 13(1):6556.

PMID: 36344507 PMC: 9640692. DOI: 10.1038/s41467-022-33886-6.


References
1.
Murray H, Errington J . Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell. 2008; 135(1):74-84. DOI: 10.1016/j.cell.2008.07.044. View

2.
Ireton K, Gunther 4th N, Grossman A . spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol. 1994; 176(17):5320-9. PMC: 196717. DOI: 10.1128/jb.176.17.5320-5329.1994. View

3.
Goranov A, Breier A, Merrikh H, Grossman A . YabA of Bacillus subtilis controls DnaA-mediated replication initiation but not the transcriptional response to replication stress. Mol Microbiol. 2009; 74(2):454-66. PMC: 2823125. DOI: 10.1111/j.1365-2958.2009.06876.x. View

4.
Scholefield G, Errington J, Murray H . Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J. 2012; 31(6):1542-55. PMC: 3321191. DOI: 10.1038/emboj.2012.6. View

5.
Katayama T, Ozaki S, Keyamura K, Fujimitsu K . Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol. 2010; 8(3):163-70. DOI: 10.1038/nrmicro2314. View