Growth and Optical Properties of Direct Band Gap Ge/GeSn Core/Shell Nanowire Arrays
Overview
Authors
Affiliations
Group IV semiconductor optoelectronic devices are now possible by using strain-free direct band gap GeSn alloys grown on a Ge/Si virtual substrate with Sn contents above 9%. Here, we demonstrate the growth of Ge/GeSn core/shell nanowire arrays with Sn incorporation up to 13% and without the formation of Sn clusters. The nanowire geometry promotes strain relaxation in the GeSn shell and limits the formation of structural defects. This results in room-temperature photoluminescence centered at 0.465 eV and enhanced absorption above 98%. Therefore, direct band gap GeSn grown in a nanowire geometry holds promise as a low-cost and high-efficiency material for photodetectors operating in the short-wave infrared and thermal imaging devices.
Electronic Transport and Quantum Phenomena in Nanowires.
Badawy G, Bakkers E Chem Rev. 2024; 124(5):2419-2440.
PMID: 38394689 PMC: 10941195. DOI: 10.1021/acs.chemrev.3c00656.
Short-wave infrared cavity resonances in a single GeSn nanowire.
Kim Y, Assali S, Joo H, Koelling S, Chen M, Luo L Nat Commun. 2023; 14(1):4393.
PMID: 37474549 PMC: 10359335. DOI: 10.1038/s41467-023-40140-0.
Han D, Tang W, Sun N, Ye H, Chai H, Wang M Nanomaterials (Basel). 2023; 13(11).
PMID: 37299635 PMC: 10254845. DOI: 10.3390/nano13111732.
Scalable fabrication of self-assembled GeSn vertical nanowires for nanophotonic applications.
Lin G, An Y, Ding H, Zhao H, Wang J, Chen S Nanophotonics. 2023; 12(2):219-228.
PMID: 36776470 PMC: 9889135. DOI: 10.1515/nanoph-2022-0489.
Biswas S, Doherty J, Galluccio E, Manning H, Conroy M, Duffy R ACS Appl Nano Mater. 2021; 4(2):1048-1056.
PMID: 34056558 PMC: 8153542. DOI: 10.1021/acsanm.0c02569.