» Articles » PMID: 28134825

Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2017 Jan 31
PMID 28134825
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The PAMONO-sensor (plasmon assisted microscopy of nano-objects) demonstrated an ability to detect and quantify individual viruses and virus-like particles. However, another group of biological vesicles-microvesicles (100-1000 nm)-also attracts growing interest as biomarkers of different pathologies and needs development of novel techniques for characterization. This work shows the applicability of a PAMONO-sensor for selective detection of microvesicles in aquatic samples. The sensor permits comparison of relative concentrations of microvesicles between samples. We also study a possibility of repeated use of a sensor chip after elution of the microvesicle capturing layer. Moreover, we improve the detection features of the PAMONO-sensor. The detection process utilizes novel machine learning techniques on the sensor image data to estimate particle size distributions of nano-particles in polydisperse samples. Altogether, our findings expand analytical features and the application field of the PAMONO-sensor. They can also serve for a maturation of diagnostic tools based on the PAMONO-sensor platform.

Citing Articles

Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances.

Manoharan Nair Sudha Kumari S, Thankappan Suryabai X ACS Omega. 2024; 9(50):48918-48987.

PMID: 39713646 PMC: 11656264. DOI: 10.1021/acsomega.4c07991.


Surface plasmon coupling between wide-field SPR microscopy and gold nanoparticles.

Al-Bataineh Q, Telfah A, Tavares C, Hergenroder R Sci Rep. 2023; 13(1):22405.

PMID: 38104224 PMC: 10725443. DOI: 10.1038/s41598-023-49583-3.


The Employment of the Surface Plasmon Resonance (SPR) Microscopy Sensor for the Detection of Individual Extracellular Vesicles and Non-Biological Nanoparticles.

Sharar N, Wustefeld K, Talukder R, Skolnik J, Kaufmann K, Giebel B Biosensors (Basel). 2023; 13(4).

PMID: 37185547 PMC: 10136938. DOI: 10.3390/bios13040472.


Switchable Polyacrylic Acid Polyelectrolyte Brushes for Surface Plasmon Resonance Applications.

Al-Bataineh Q, Telfah A, Shpacovitch V, Tavares C, Hergenroder R Sensors (Basel). 2023; 23(9).

PMID: 37177486 PMC: 10181114. DOI: 10.3390/s23094283.


Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate.

Al-Bataineh Q, Shpacovitch V, Sadiq D, Telfah A, Hergenroder R Biosensors (Basel). 2022; 12(12).

PMID: 36551089 PMC: 9775065. DOI: 10.3390/bios12121122.


References
1.
Gardt O, Grewe B, Tippler B, Uberla K, Temchura V . HIV-derived lentiviral particles promote T-cell independent activation and differentiation of naïve cognate conventional B2-cells in vitro. Vaccine. 2013; 31(44):5088-98. DOI: 10.1016/j.vaccine.2013.08.055. View

2.
Yanez-Mo M, Siljander P, Andreu Z, Bedina Zavec A, Borras F, Buzas E . Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015; 4:27066. PMC: 4433489. DOI: 10.3402/jev.v4.27066. View

3.
Lee J, Park H, Jung Y, Kim J, Jung S, Chung B . Direct immobilization of protein g variants with various numbers of cysteine residues on a gold surface. Anal Chem. 2007; 79(7):2680-7. DOI: 10.1021/ac0619231. View

4.
Erdbrugger U, Lannigan J . Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry A. 2015; 89(2):123-34. DOI: 10.1002/cyto.a.22795. View

5.
Wang S, Shan X, Patel U, Huang X, Lu J, Li J . Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci U S A. 2010; 107(37):16028-32. PMC: 2941305. DOI: 10.1073/pnas.1005264107. View