» Articles » PMID: 28112152

A Metastable Liquid Melted from a Crystalline Solid Under Decompression

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Jan 24
PMID 28112152
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

Citing Articles

Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL).

Liermann H, Konopkova Z, Appel K, Prescher C, Schropp A, Cerantola V J Synchrotron Radiat. 2021; 28(Pt 3):688-706.

PMID: 33949979 PMC: 8127375. DOI: 10.1107/S1600577521002551.


Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature.

Liu N, Zhou G, Yang A, Yu X, Shi F, Sun J Proc Natl Acad Sci U S A. 2019; 116(3):765-770.

PMID: 30602455 PMC: 6338843. DOI: 10.1073/pnas.1817286116.


Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth.

Gorman M, Coleman A, Briggs R, McWilliams R, McGonegle D, Bolme C Sci Rep. 2018; 8(1):16927.

PMID: 30446720 PMC: 6240068. DOI: 10.1038/s41598-018-35260-3.


Kinetics of Decelerated Melting.

Wondraczek L, Pan Z, Palenta T, Erlebach A, Misture S, Sierka M Adv Sci (Weinh). 2018; 5(5):1700850.

PMID: 29876211 PMC: 5979640. DOI: 10.1002/advs.201700850.


Experimental evidence of low-density liquid water upon rapid decompression.

Lin C, Smith J, Sinogeikin S, Shen G Proc Natl Acad Sci U S A. 2018; 115(9):2010-2015.

PMID: 29440411 PMC: 5834690. DOI: 10.1073/pnas.1716310115.


References
1.
Burakovsky L, Chen S, Preston D, Belonoshko A, Rosengren A, Mikhaylushkin A . High-pressure--high-temperature polymorphism in ta: resolving an ongoing experimental controversy. Phys Rev Lett. 2010; 104(25):255702. DOI: 10.1103/PhysRevLett.104.255702. View

2.
Pogatscher S, Leutenegger D, Schawe J, Uggowitzer P, Loffler J . Solid-solid phase transitions via melting in metals. Nat Commun. 2016; 7:11113. PMC: 4844691. DOI: 10.1038/ncomms11113. View

3.
McMahon , Degtyareva , Nelmes . Ba-IV-type incommensurate crystal structure in group-V metals. Phys Rev Lett. 2000; 85(23):4896-9. DOI: 10.1103/PhysRevLett.85.4896. View

4.
Qi W, Peng Y, Han Y, Bowles R, Dijkstra M . Nonclassical Nucleation in a Solid-Solid Transition of Confined Hard Spheres. Phys Rev Lett. 2015; 115(18):185701. DOI: 10.1103/PhysRevLett.115.185701. View

5.
Peng Y, Wang F, Wang Z, Alsayed A, Zhang Z, Yodh A . Two-step nucleation mechanism in solid-solid phase transitions. Nat Mater. 2014; 14(1):101-8. DOI: 10.1038/nmat4083. View