» Articles » PMID: 28042025

Androgen Receptor Regulation by Histone Methyltransferase Suppressor of Variegation 3-9 Homolog 2 and Melanoma Antigen-A11

Overview
Date 2017 Jan 3
PMID 28042025
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Androgen receptor (AR) transcriptional activity depends on interactions between the AR NH-terminal region and transcriptional coregulators. A yeast two-hybrid screen of a human testis library using predicted α-helical NH-terminal fragment AR-(370-420) as bait identified suppressor of variegation 3-9 homolog 2 (SUV39H2) histone methyltransferase as an AR interacting protein. SUV39H2 interaction with AR and the AR coregulator, melanoma antigen-A11 (MAGE-A11), was verified in two-hybrid, in vitro glutathione S-transferase affinity matrix and coimmunoprecipitation assays. Fluorescent immunocytochemistry colocalized SUV39H2 and AR in the cytoplasm without androgen, in the nucleus with androgen, and with MAGE-A11 in the nucleus independent of androgen. Chromatin immunoprecipitation using antibodies raised against SUV39H2 demonstrated androgen-dependent recruitment of AR and SUV39H2 to the androgen-responsive upstream enhancer of the prostate-specific antigen gene. SUV39H2 functioned cooperatively with MAGE-A11 to increase androgen-dependent AR transcriptional activity. SUV39H2 histone methyltransferase is an AR coactivator that increases androgen-dependent transcriptional activity through interactions with AR and MAGE-A11.

Citing Articles

From microscopes to molecules: The evolution of prostate cancer diagnostics.

Tao J, Bian X, Zhou J, Zhang M Cytojournal. 2024; 21:29.

PMID: 39391208 PMC: 11464998. DOI: 10.25259/Cytojournal_36_2024.


Histone methyltransferase SUV39H2 regulates apoptosis and chemosensitivity in prostate cancer through AKT/FOXO signaling pathway.

Sun D, Guo J, Liang W, Chen Y, Wei S, Li A Med Oncol. 2024; 41(2):44.

PMID: 38170382 DOI: 10.1007/s12032-023-02252-x.


Epigenetic (De)regulation in Prostate Cancer.

Xu C, Zhao S, Cai L Cancer Treat Res. 2023; 190:321-360.

PMID: 38113006 PMC: 11421856. DOI: 10.1007/978-3-031-45654-1_10.


The epigenetic function of androgen receptor in prostate cancer progression.

Sawada T, Kanemoto Y, Kurokawa T, Kato S Front Cell Dev Biol. 2023; 11:1083486.

PMID: 37025180 PMC: 10070878. DOI: 10.3389/fcell.2023.1083486.


Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer.

Mao Y, Yang G, Li Y, Liang G, Xu W, Hu M Cancers (Basel). 2022; 14(15).

PMID: 35954408 PMC: 9367587. DOI: 10.3390/cancers14153744.


References
1.
Su S, Minges J, Grossman G, Blackwelder A, Mohler J, Wilson E . Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. J Biol Chem. 2013; 288(34):24809-24. PMC: 3750176. DOI: 10.1074/jbc.M113.468579. View

2.
Quarmby V, Kemppainen J, Sar M, Lubahn D, French F, Wilson E . Expression of recombinant androgen receptor in cultured mammalian cells. Mol Endocrinol. 1990; 4(9):1399-407. DOI: 10.1210/mend-4-9-1399. View

3.
Ponguta L, Gregory C, French F, Wilson E . Site-specific androgen receptor serine phosphorylation linked to epidermal growth factor-dependent growth of castration-recurrent prostate cancer. J Biol Chem. 2008; 283(30):20989-1001. PMC: 2475695. DOI: 10.1074/jbc.M802392200. View

4.
Ait-Si-Ali S, Guasconi V, Fritsch L, Yahi H, Sekhri R, Naguibneva I . A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 2004; 23(3):605-15. PMC: 1271807. DOI: 10.1038/sj.emboj.7600074. View

5.
Wu H, Min J, Lunin V, Antoshenko T, Dombrovski L, Zeng H . Structural biology of human H3K9 methyltransferases. PLoS One. 2010; 5(1):e8570. PMC: 2797608. DOI: 10.1371/journal.pone.0008570. View