» Articles » PMID: 28041883

Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2017 Jan 3
PMID 28041883
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

Sharp wave-ripple (SWR) oscillations play a key role in memory consolidation during non-rapid eye movement sleep, immobility, and consummatory behavior. However, whether temporally modulated synaptic excitation or inhibition underlies the ripples is controversial. To address this question, we performed simultaneous recordings of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) and local field potentials (LFPs) in the CA1 region of awake mice in vivo. During SWRs, inhibition dominated over excitation, with a peak conductance ratio of 4.1 ± 0.5. Furthermore, the amplitude of SWR-associated IPSCs was positively correlated with SWR magnitude, whereas that of EPSCs was not. Finally, phase analysis indicated that IPSCs were phase-locked to individual ripple cycles, whereas EPSCs were uniformly distributed in phase space. Optogenetic inhibition indicated that PV interneurons provided a major contribution to SWR-associated IPSCs. Thus, phasic inhibition, but not excitation, shapes SWR oscillations in the hippocampal CA1 region in vivo.

Citing Articles

Sleep microstructure organizes memory replay.

Chang H, Tang W, Wulf A, Nyasulu T, Wolf M, Fernandez-Ruiz A Nature. 2025; 637(8048):1161-1169.

PMID: 39743590 DOI: 10.1038/s41586-024-08340-w.


Learning-dependent gating of hippocampal inputs by frontal interneurons.

Zhang C, Sontag L, Gomez-Ocadiz R, Schmidt-Hieber C Proc Natl Acad Sci U S A. 2024; 121(45):e2403325121.

PMID: 39467130 PMC: 11551329. DOI: 10.1073/pnas.2403325121.


Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus.

Bocchio M, Vorobyev A, Sadeh S, Brustlein S, Dard R, Reichinnek S PLoS Biol. 2024; 22(10):e3002837.

PMID: 39401246 PMC: 11501041. DOI: 10.1371/journal.pbio.3002837.


A hippocampal circuit mechanism to balance memory reactivation during sleep.

Karaba L, Robinson H, Harvey R, Chen W, Fernandez-Ruiz A, Oliva A Science. 2024; 385(6710):738-743.

PMID: 39146421 PMC: 11428313. DOI: 10.1126/science.ado5708.


Functional architecture of intracellular oscillations in hippocampal dendrites.

Liao Z, Gonzalez K, Li D, Yang C, Holder D, McClain N Nat Commun. 2024; 15(1):6295.

PMID: 39060234 PMC: 11282248. DOI: 10.1038/s41467-024-50546-z.


References
1.
Hajos N, Karlocai M, Nemeth B, Ulbert I, Monyer H, Szabo G . Input-output features of anatomically identified CA3 neurons during hippocampal sharp wave/ripple oscillation in vitro. J Neurosci. 2013; 33(28):11677-91. PMC: 3724544. DOI: 10.1523/JNEUROSCI.5729-12.2013. View

2.
Hulse B, Moreaux L, Lubenov E, Siapas A . Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice. Neuron. 2016; 89(4):800-13. PMC: 5167572. DOI: 10.1016/j.neuron.2016.01.014. View

3.
Varga C, Golshani P, Soltesz I . Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A. 2012; 109(40):E2726-34. PMC: 3479571. DOI: 10.1073/pnas.1210929109. View

4.
Jadhav S, Kemere C, German P, Frank L . Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012; 336(6087):1454-8. PMC: 4441285. DOI: 10.1126/science.1217230. View

5.
Hu H, Gan J, Jonas P . Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function. Science. 2014; 345(6196):1255263. DOI: 10.1126/science.1255263. View