» Articles » PMID: 28038734

Partially Assembled Nucleosome Structures At Atomic Detail

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2017 Jan 1
PMID 28038734
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4), the tetrasome (H3·H4), and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.

Citing Articles

Unveiling Nucleosome Dynamics: A Comparative Study Using All-Atom and Coarse-Grained Simulations Enhanced by Principal Component Analysis.

Ghosh Moulick A, Patel R, Onyema A, Loverde S bioRxiv. 2024; .

PMID: 39574694 PMC: 11580959. DOI: 10.1101/2024.11.05.622089.


Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography.

Zhang M, Diaz-Celis C, Liu J, Tao J, Ashby P, Bustamante C Nat Commun. 2024; 15(1):4395.

PMID: 38782894 PMC: 11116431. DOI: 10.1038/s41467-024-48305-1.


Sequence Dependence in Nucleosome Dynamics.

Khatua P, Tang P, Ghosh Moulick A, Patel R, Manandhar A, Loverde S J Phys Chem B. 2024; 128(13):3090-3101.

PMID: 38530903 PMC: 11181342. DOI: 10.1021/acs.jpcb.3c07363.


Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy.

Onoa B, Diaz-Celis C, Canari-Chumpitaz C, Lee A, Bustamante C ACS Cent Sci. 2024; 10(1):122-137.

PMID: 38292612 PMC: 10823521. DOI: 10.1021/acscentsci.3c00735.


Combining molecular dynamics simulations and scoring method to computationally model ubiquitylated linker histones in chromatosomes.

Sawade K, Marx A, Peter C, Kukharenko O PLoS Comput Biol. 2023; 19(8):e1010531.

PMID: 37527265 PMC: 10442151. DOI: 10.1371/journal.pcbi.1010531.


References
1.
Thastrom A, Gottesfeld J, Luger K, Widom J . Histone-DNA binding free energy cannot be measured in dilution-driven dissociation experiments. Biochemistry. 2004; 43(3):736-41. DOI: 10.1021/bi0302043. View

2.
Gibney E, Nolan C . Epigenetics and gene expression. Heredity (Edinb). 2010; 105(1):4-13. DOI: 10.1038/hdy.2010.54. View

3.
Luger K, Mader A, Richmond R, Sargent D, Richmond T . Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648):251-60. DOI: 10.1038/38444. View

4.
Henderson R, Schneider S, Li Q, Hornby D, White S, Oberleithner H . Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy. Proc Natl Acad Sci U S A. 1996; 93(16):8756-60. PMC: 38746. DOI: 10.1073/pnas.93.16.8756. View

5.
Li G, Levitus M, Bustamante C, Widom J . Rapid spontaneous accessibility of nucleosomal DNA. Nat Struct Mol Biol. 2004; 12(1):46-53. DOI: 10.1038/nsmb869. View