» Articles » PMID: 28017589

Distinctive Patterns of Transcription and RNA Processing for Human LincRNAs

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2016 Dec 27
PMID 28017589
Citations 149
Authors
Affiliations
Soon will be listed here.
Abstract

Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.

Citing Articles

Genome biology of long non-coding RNAs in humans: A virtual karyotype.

Palma A, Buonaiuto G, Ballarino M, Laneve P Comput Struct Biotechnol J. 2025; 27:575-584.

PMID: 39989619 PMC: 11847481. DOI: 10.1016/j.csbj.2025.01.026.


Promoter-proximal RNA polymerase II termination regulates transcription during human cell type transition.

Lysakovskaia K, Devadas A, Schwalb B, Lidschreiber M, Cramer P Nat Struct Mol Biol. 2025; .

PMID: 39934431 DOI: 10.1038/s41594-025-01486-9.


Comprehensive insights and In silico analysis into the emerging role of LincRNAs in lung diseases pathogenesis; a step toward ncRNA precision.

Hamdy N, Zaki M, Abdelmaksoud N, Elshaer S, Abd-Elmawla M, Rizk N Funct Integr Genomics. 2025; 25(1):34.

PMID: 39912974 PMC: 11802690. DOI: 10.1007/s10142-025-01540-1.


Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways.

Doghish A, Mageed S, Zaki M, Abd-Elmawla M, Sayed G, Hatawsh A Funct Integr Genomics. 2025; 25(1):16.

PMID: 39821470 DOI: 10.1007/s10142-025-01526-z.


Localization is the key to action: regulatory peculiarities of lncRNAs.

Poloni J, Oliveira F, Feltes B Front Genet. 2024; 15:1478352.

PMID: 39737005 PMC: 11683014. DOI: 10.3389/fgene.2024.1478352.


References
1.
Ulitsky I, Bartel D . lincRNAs: genomics, evolution, and mechanisms. Cell. 2013; 154(1):26-46. PMC: 3924787. DOI: 10.1016/j.cell.2013.06.020. View

2.
Vilborg A, Passarelli M, Yario T, Tycowski K, Steitz J . Widespread Inducible Transcription Downstream of Human Genes. Mol Cell. 2015; 59(3):449-61. PMC: 4530028. DOI: 10.1016/j.molcel.2015.06.016. View

3.
Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D . Transcriptome-wide analysis of exosome targets. Mol Cell. 2012; 48(3):422-33. PMC: 3526797. DOI: 10.1016/j.molcel.2012.08.013. View

4.
Garber M, Grabherr M, Guttman M, Trapnell C . Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011; 8(6):469-77. DOI: 10.1038/nmeth.1613. View

5.
Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M . Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007; 3(9):570-5. DOI: 10.1038/nchembio.2007.16. View