» Articles » PMID: 28012708

Secondary Motor Cortex: Where 'Sensory' Meets 'Motor' in the Rodent Frontal Cortex

Overview
Journal Trends Neurosci
Specialty Neurology
Date 2016 Dec 26
PMID 28012708
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

In rodents, the medial aspect of the secondary motor cortex (M2) is known by other names, including medial agranular cortex (AGm), medial precentral cortex (PrCm), and frontal orienting field (FOF). As a subdivision of the medial prefrontal cortex (mPFC), M2 can be defined by a distinct set of afferent and efferent connections, microstimulation responses, and lesion outcomes. However, the behavioral role of M2 remains mysterious. Here, we focus on evidence from rodent studies, highlighting recent findings of early and context-dependent choice-related activity in M2 during voluntary behavior. Based on the current understanding, we suggest that a major function for M2 is to flexibly map antecedent signals such as sensory cues to motor actions, thereby enabling adaptive choice behavior.

Citing Articles

Frontostriatal regulation of brain circuits contributes to flexible decision making.

Duan Y, Ma Z, Tsai P, Lu H, Xiao X, Wang D Neuropsychopharmacology. 2025; .

PMID: 39953208 DOI: 10.1038/s41386-025-02065-8.


Aging disrupts the link between network centrality and functional properties of prefrontal neurons during memory-guided behavior.

Ranjbar-Slamloo Y, Chong H, Kamigaki T Commun Biol. 2025; 8(1):62.

PMID: 39820515 PMC: 11739477. DOI: 10.1038/s42003-025-07498-x.


Prefrontal cortical circuits in social behaviors: an overview.

Cao W, Li H, Luo J J Zhejiang Univ Sci B. 2024; 25(11):941-955.

PMID: 39626878 PMC: 11634449. DOI: 10.1631/jzus.B2300743.


The role of motor cortex in motor sequence execution depends on demands for flexibility.

Mizes K, Lindsey J, Escola G, Olveczky B Nat Neurosci. 2024; 27(12):2466-2475.

PMID: 39496797 DOI: 10.1038/s41593-024-01792-3.


Learning-dependent gating of hippocampal inputs by frontal interneurons.

Zhang C, Sontag L, Gomez-Ocadiz R, Schmidt-Hieber C Proc Natl Acad Sci U S A. 2024; 121(45):e2403325121.

PMID: 39467130 PMC: 11551329. DOI: 10.1073/pnas.2403325121.


References
1.
Wise S, Murray E . Arbitrary associations between antecedents and actions. Trends Neurosci. 2000; 23(6):271-6. DOI: 10.1016/s0166-2236(00)01570-8. View

2.
Van De Werd H, Rajkowska G, Evers P, Uylings H . Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct. 2010; 214(4):339-53. PMC: 2862954. DOI: 10.1007/s00429-010-0247-z. View

3.
Phoumthipphavong V, Barthas F, Hassett S, Kwan A . Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex. eNeuro. 2016; 3(2). PMC: 4819286. DOI: 10.1523/ENEURO.0133-15.2016. View

4.
Rose J, WOOLSEY C . The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis. 1948; 27 (1 vol.):210-32. View

5.
Li N, Chen T, Guo Z, Gerfen C, Svoboda K . A motor cortex circuit for motor planning and movement. Nature. 2015; 519(7541):51-6. DOI: 10.1038/nature14178. View