» Articles » PMID: 27995727

Kinetic Analysis and Binding Studies of a New Recombinant Human Factor VIIa for Treatment of Haemophilia

Overview
Journal Haemophilia
Specialty Hematology
Date 2016 Dec 21
PMID 27995727
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction/aim: LR769 is a new second-generation recombinant human Factor VIIa (rhFVIIa) developed for haemophilia treatment. We determined enzymatic properties of LR769 and its interaction with antithrombin, tissue factor, platelets and endothelial protein C receptor (EPCR), compared with NovoSevenRT.

Methods: Kinetic enzyme assays and active site titration were used for enzymatic studies. Surface Plasmon Resonance (SPR) was used for determination of binding constants. Cellular binding was determined for platelets and cultured human umbilical vein endothelial cells (HUVEC).

Results: The dissociation constant (K ) for activated platelet binding was in the 1 μm range for both products. At saturation, more LR769 than NovoSevenRT was bound to the platelets. Binding to HUVEC was 25-50% higher for LR769 than for NovoSevenRT. Protein C, soluble EPCR, and anti-EPCR antibody all reduced the binding, indicating specificity for EPCR. LR769 was similar to NovoSevenRT in all kinetic assays. Active site titration demonstrated 0.7 mole of active site/mole of protein. The k /K values for activation of FX and FIX with purified recombinant tissue factor and phospholipids were 10.5 s /0.32 μm and 3.3 s /0.44 μm respectively. The apparent second-order rate constant for inactivation by human plasma AT was 5.9 ± 0.4 × 10 m s . The K values for binding of LR769 to soluble tissue factor and full-length tissue factor were 8.1 nm and 0.9 nm, respectively, and the K for binding to soluble EPCR was 41 nm.

Conclusion: Overall, LR769 exhibited characteristics similar to NovoSevenRT, but bound EPCR on HUVEC with somewhat higher affinity than NovoSevenRT.

Citing Articles

Recombinant factor VIIa: new insights into the mechanism of action through product innovation.

Escobar M, Hoffman M, Castaman G, Hermans C, Mahlangu J, Oldenburg J Res Pract Thromb Haemost. 2025; 9(1):102670.

PMID: 39990097 PMC: 11847032. DOI: 10.1016/j.rpth.2024.102670.


Bleed treatment with eptacog beta (rFVIIa) results in a low incidence of rebleeding in adult and adolescent patients with haemophilia A or B with inhibitors.

Dunn A, Dargaud Y, Abajas Y, Carcao M, Castaman G, Giermasz A Haemophilia. 2024; 31(1):78-86.

PMID: 39676340 PMC: 11780187. DOI: 10.1111/hae.15109.


Real-world effectiveness of eptacog beta in patients with haemophilia and inhibitors: A multi-institutional case series.

Youkhana K, Batsuli G, Acharya S, Khan O, Tran D, Dvorak A Haemophilia. 2024; 30(6):1321-1331.

PMID: 39297369 PMC: 11659498. DOI: 10.1111/hae.15094.


Effects of Chemical Fixatives on Kinetic Measurements of Biomolecular Interaction on Cell Membrane.

Dong T, Wan S, Wang Y, Fu Y, Wang P J Membr Biol. 2024; 257(1-2):131-142.

PMID: 38206377 DOI: 10.1007/s00232-024-00305-4.


The safety of activated eptacog beta in the management of bleeding episodes and perioperative haemostasis in adult and paediatric haemophilia patients with inhibitors.

Escobar M, Castaman G, Boix S, Callaghan M, Moerloose P, Ducore J Haemophilia. 2021; 27(6):921-931.

PMID: 34636112 PMC: 9292935. DOI: 10.1111/hae.14419.