Cabanillas Silva P, Sun H, Rezk M, Roccaro-Waldmeyer D, Fliegenschmidt J, Hulde N
J Med Internet Res. 2024; 26:e51409.
PMID: 39671571
PMC: 11681292.
DOI: 10.2196/51409.
Pandey S
Nanotheranostics. 2024; 8(3):270-284.
PMID: 38577320
PMC: 10988213.
DOI: 10.7150/ntno.94071.
Valik J, Ward L, Tanushi H, Johansson A, Farnert A, Mogensen M
Sci Rep. 2023; 13(1):11760.
PMID: 37474597
PMC: 10359402.
DOI: 10.1038/s41598-023-38858-4.
Iannello J, Maltese N
Fed Pract. 2022; 38(11):508-515b.
PMID: 35136335
PMC: 8815614.
DOI: 10.12788/fp.0194.
Kleven A, Middleton A, Kesimoglu Z, Slagel I, Creager A, Hanson R
J Arthroplasty. 2021; 37(4):668-673.
PMID: 34954019
PMC: 8934277.
DOI: 10.1016/j.arth.2021.12.022.
Outcome, diagnosis, and microbiological profile comparison of community- and hospital-acquired bacteremia: A retrospective cohort study.
Wakabayashi T, Iwata H
J Gen Fam Med. 2021; 22(6):327-333.
PMID: 34754710
PMC: 8561096.
DOI: 10.1002/jgf2.453.
Electronic early notification of sepsis in hospitalized ward patients: a study protocol for a stepped-wedge cluster randomized controlled trial.
Arabi Y, Alsaawi A, Al Zahrani M, Al Khathaami A, AlHazme R, Al Mutrafy A
Trials. 2021; 22(1):695.
PMID: 34635151
PMC: 8503718.
DOI: 10.1186/s13063-021-05562-5.
Ambulatory Risk Models for the Long-Term Prevention of Sepsis: Retrospective Study.
Lee J, Molani S, Fang C, Jade K, OMahony D, Kornilov S
JMIR Med Inform. 2021; 9(7):e29986.
PMID: 34086596
PMC: 8299345.
DOI: 10.2196/29986.
Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals.
Burdick H, Pino E, Gabel-Comeau D, Gu C, Roberts J, Le S
BMC Med Inform Decis Mak. 2020; 20(1):276.
PMID: 33109167
PMC: 7590695.
DOI: 10.1186/s12911-020-01284-x.
Machine learning for early detection of sepsis: an internal and temporal validation study.
Bedoya A, Futoma J, Clement M, Corey K, Brajer N, Lin A
JAMIA Open. 2020; 3(2):252-260.
PMID: 32734166
PMC: 7382639.
DOI: 10.1093/jamiaopen/ooaa006.
Sepsis Among Medicare Beneficiaries: 2. The Trajectories of Sepsis, 2012-2018.
Buchman T, Simpson S, Sciarretta K, Finne K, Sowers N, Collier M
Crit Care Med. 2020; 48(3):289-301.
PMID: 32058367
PMC: 7017944.
DOI: 10.1097/CCM.0000000000004226.
Sepsis Among Medicare Beneficiaries: 1. The Burdens of Sepsis, 2012-2018.
Buchman T, Simpson S, Sciarretta K, Finne K, Sowers N, Collier M
Crit Care Med. 2020; 48(3):276-288.
PMID: 32058366
PMC: 7017943.
DOI: 10.1097/CCM.0000000000004224.
The Prevalence and Outcomes of Sepsis in Adult Patients in Two Hospitals in Malawi.
Kayambankadzanja R, Schell C, Namboya F, Phiri T, Banda-Katha G, Mndolo S
Am J Trop Med Hyg. 2020; 102(4):896-901.
PMID: 32043446
PMC: 7124904.
DOI: 10.4269/ajtmh.19-0320.
On classifying sepsis heterogeneity in the ICU: insight using machine learning.
Ibrahim Z, Wu H, Hamoud A, Stappen L, Dobson R, Agarossi A
J Am Med Inform Assoc. 2020; 27(3):437-443.
PMID: 31951005
PMC: 7025363.
DOI: 10.1093/jamia/ocz211.
Implementation of Complementary Model using Optimal Combination of Hematological Parameters for Sepsis Screening in Patients with Fever.
Choi J, Trinh T, Ha J, Yang M, Lee Y, Kim Y
Sci Rep. 2020; 10(1):273.
PMID: 31937825
PMC: 6959355.
DOI: 10.1038/s41598-019-57107-1.
Pediatric Severe Sepsis Prediction Using Machine Learning.
Le S, Hoffman J, Barton C, Fitzgerald J, Allen A, Pellegrini E
Front Pediatr. 2019; 7:413.
PMID: 31681711
PMC: 6798083.
DOI: 10.3389/fped.2019.00413.
Critical Transitions in Intensive Care Units: A Sepsis Case Study.
Ghalati P, Samal S, Bhat J, Deisz R, Marx G, Schuppert A
Sci Rep. 2019; 9(1):12888.
PMID: 31501451
PMC: 6733794.
DOI: 10.1038/s41598-019-49006-2.
Sepsis Presenting in Hospitals versus Emergency Departments: Demographic, Resuscitation, and Outcome Patterns in a Multicenter Retrospective Cohort.
Leisman D, Angel C, Schneider S, DAmore J, DAngelo J, Doerfler M
J Hosp Med. 2019; 14(6):340-348.
PMID: 30986182
PMC: 6625440.
DOI: 10.12788/jhm.3188.
Admission characteristics predictive of in-hospital death from hospital-acquired sepsis: A comparison to community-acquired sepsis.
Padro T, Smotherman C, Gautam S, Gerdik C, Gray-Eurom K, Guirgis F
J Crit Care. 2019; 51:145-148.
PMID: 30825788
PMC: 6668610.
DOI: 10.1016/j.jcrc.2019.02.023.
Comparison of Prognostic Accuracy of the quick Sepsis-Related Organ Failure Assessment between Short- & Long-term Mortality in Patients Presenting Outside of the Intensive Care Unit - A Systematic Review & Meta-analysis.
Tan T, Tang Y, Ching L, Abdullah N, Neoh H
Sci Rep. 2018; 8(1):16698.
PMID: 30420768
PMC: 6232181.
DOI: 10.1038/s41598-018-35144-6.