Morse M, Cashen B, Rouzina I, Williams M
QRB Discov. 2025; 6:e1.
PMID: 39944884
PMC: 11811875.
DOI: 10.1017/qrd.2024.21.
Liu J, Gore S, Heyer W
Nucleic Acids Res. 2025; 53(3).
PMID: 39898551
PMC: 11788929.
DOI: 10.1093/nar/gkaf052.
Basto C, Moreira-Tavares E, Muhammad A, Baconnais S, Mazon G, Le Cam E
Methods Mol Biol. 2024; 2881():239-257.
PMID: 39704947
DOI: 10.1007/978-1-0716-4280-1_12.
Petassi M, Shin Y, Jessop A, Morse K, Kim S, Matei R
bioRxiv. 2024; .
PMID: 39677717
PMC: 11642858.
DOI: 10.1101/2024.12.03.626531.
Hengel S, Oppenheimer K, Smith C, Schaich M, Rein H, Martino J
Nat Commun. 2024; 15(1):7197.
PMID: 39169038
PMC: 11339404.
DOI: 10.1038/s41467-024-51595-0.
Rtt105 stimulates Rad51-ssDNA assembly and orchestrates Rad51 and RPA actions to promote homologous recombination repair.
Wang X, Zhao X, Yu Z, Fan T, Guo Y, Liang J
Proc Natl Acad Sci U S A. 2024; 121(34):e2402262121.
PMID: 39145931
PMC: 11348298.
DOI: 10.1073/pnas.2402262121.
Molecular basis of FIGNL1 in dissociating RAD51 from DNA and chromatin.
Carver A, Yu T, Yates L, White T, Wang R, Lister K
bioRxiv. 2024; .
PMID: 39071279
PMC: 11275795.
DOI: 10.1101/2024.07.16.603765.
The translocation activity of Rad54 reduces crossover outcomes during homologous recombination.
Sridalla K, Woodhouse M, Hu J, Scheer J, Ferlez B, Crickard J
Nucleic Acids Res. 2024; 52(12):7031-7048.
PMID: 38828785
PMC: 11229335.
DOI: 10.1093/nar/gkae474.
DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces.
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert S, Ristic D, Majeed A
Nucleic Acids Res. 2024; 52(12):7337-7353.
PMID: 38828772
PMC: 11229353.
DOI: 10.1093/nar/gkae452.
DNA-binding site II is required for RAD51 recombinogenic activity in .
Petiot V, White C, Da Ines O
Life Sci Alliance. 2024; 7(8).
PMID: 38803223
PMC: 11106524.
DOI: 10.26508/lsa.202402701.
Human AAA+ ATPase FIGNL1 suppresses RAD51-mediated ultra-fine bridge formation.
Matsuzaki K, Shinohara A, Shinohara M
Nucleic Acids Res. 2024; 52(10):5774-5791.
PMID: 38597669
PMC: 11162793.
DOI: 10.1093/nar/gkae263.
Cryo-EM structures of RAD51 assembled on nucleosomes containing a DSB site.
Shioi T, Hatazawa S, Oya E, Hosoya N, Kobayashi W, Ogasawara M
Nature. 2024; 628(8006):212-220.
PMID: 38509361
PMC: 10990931.
DOI: 10.1038/s41586-024-07196-4.
Structural Motifs at the Telomeres and Their Role in Regulatory Pathways.
Alanazi A, Parkinson G, Haider S
Biochemistry. 2024; 63(7):827-842.
PMID: 38481135
PMC: 10993422.
DOI: 10.1021/acs.biochem.4c00023.
Structure of RADX and mechanism for regulation of RAD51 nucleofilaments.
Balakrishnan S, Adolph M, Tsai M, Akizuki T, Gallagher K, Cortez D
Proc Natl Acad Sci U S A. 2024; 121(12):e2316491121.
PMID: 38466836
PMC: 10962997.
DOI: 10.1073/pnas.2316491121.
All who wander are not lost: the search for homology during homologous recombination.
Hu J, Crickard J
Biochem Soc Trans. 2024; 52(1):367-377.
PMID: 38323621
PMC: 10903458.
DOI: 10.1042/BST20230705.
A recombinant approach for stapled peptide discovery yields inhibitors of the RAD51 recombinase.
Pantelejevs T, Zuazua-Villar P, Koczy O, Counsell A, Walsh S, Robertson N
Chem Sci. 2023; 14(47):13915-13923.
PMID: 38075664
PMC: 10699557.
DOI: 10.1039/d3sc03331g.
Linear Dichroism Measurements for the Study of Protein-DNA Interactions.
Takahashi M, Norden B
Int J Mol Sci. 2023; 24(22).
PMID: 38003280
PMC: 10671323.
DOI: 10.3390/ijms242216092.
Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates.
Hu J, Ferlez B, Dau J, Crickard J
Nucleic Acids Res. 2023; 51(21):11688-11705.
PMID: 37850655
PMC: 10681728.
DOI: 10.1093/nar/gkad848.
RAD51 paralogs synergize with RAD51 to protect reversed forks from cellular nucleases.
Guh C, Lei K, Chen Y, Jiang Y, Chang H, Liaw H
Nucleic Acids Res. 2023; 51(21):11717-11731.
PMID: 37843130
PMC: 10681713.
DOI: 10.1093/nar/gkad856.
Structure of RADX and mechanism for regulation of RAD51 nucleofilaments.
Balakrishnan S, Adolph M, Tsai M, Gallagher K, Cortez D, Chazin W
bioRxiv. 2023; .
PMID: 37786681
PMC: 10541619.
DOI: 10.1101/2023.09.19.558089.