» Articles » PMID: 27940610

RPAN: Rice Pan-genome Browser for ∼3000 Rice Genomes

Overview
Specialty Biochemistry
Date 2016 Dec 13
PMID 27940610
Citations 72
Authors
Affiliations
Soon will be listed here.
Abstract

A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k.

Citing Articles

Pangenome graphs and their applications in biodiversity genomics.

Secomandi S, Gallo G, Rossi R, Rodriguez Fernandes C, Jarvis E, Bonisoli-Alquati A Nat Genet. 2025; 57(1):13-26.

PMID: 39779953 DOI: 10.1038/s41588-024-02029-6.


A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study.

Kaur H, Shannon L, Samac D BMC Genomics. 2024; 25(1):1022.

PMID: 39482604 PMC: 11526573. DOI: 10.1186/s12864-024-10931-w.


Lactuca super-pangenome reduces bias towards reference genes in lettuce research.

van Workum D, Mehrem S, Snoek B, Alderkamp M, Lapin D, Mulder F BMC Plant Biol. 2024; 24(1):1019.

PMID: 39468479 PMC: 11514843. DOI: 10.1186/s12870-024-05712-2.


Evaluation of deep learning for predicting rice traits using structural and single-nucleotide genomic variants.

Vourlaki I, Ramos-Onsins S, Perez-Enciso M, Castanera R Plant Methods. 2024; 20(1):121.

PMID: 39127715 PMC: 11316328. DOI: 10.1186/s13007-024-01250-y.


A genome-wide association study of panicle blast resistance to in rice.

Jinlong H, Yu Z, Ruizhi W, Xiaoyu W, Zhiming F, Qiangqiang X Mol Breed. 2024; 44(7):49.

PMID: 39007057 PMC: 11236831. DOI: 10.1007/s11032-024-01486-5.


References
1.
Huang X, Kurata N, Wei X, Wang Z, Wang A, Zhao Q . A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012; 490(7421):497-501. PMC: 7518720. DOI: 10.1038/nature11532. View

2.
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J . SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2013; 1(1):18. PMC: 3626529. DOI: 10.1186/2047-217X-1-18. View

3.
Weigel D, Mott R . The 1001 genomes project for Arabidopsis thaliana. Genome Biol. 2009; 10(5):107. PMC: 2718507. DOI: 10.1186/gb-2009-10-5-107. View

4.
Shi X, Peng J, Yu X, Zhang X, Li D, Liu B . PopGeV: a web-based large-scale population genome browser. Bioinformatics. 2015; 31(18):3048-50. DOI: 10.1093/bioinformatics/btv324. View

5.
Seitzer P, Huynh T, Facciotti M . JContextExplorer: a tree-based approach to facilitate cross-species genomic context comparison. BMC Bioinformatics. 2013; 14:18. PMC: 3560190. DOI: 10.1186/1471-2105-14-18. View