» Articles » PMID: 27940547

Modeling Stochastic Variability in the Numbers of Surviving Salmonella Enterica, Enterohemorrhagic Escherichia Coli, and Listeria Monocytogenes Cells at the Single-Cell Level in a Desiccated Environment

Overview
Date 2016 Dec 13
PMID 27940547
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Importance: We developed a model to enable the quantitative assessment of bacterial survivors of inactivation procedures because the presence of even one bacterium can cause foodborne disease. The results demonstrate that the variability in the numbers of surviving bacteria was described as a Poisson distribution by use of the model developed by use of the Poisson process. Description of the number of surviving bacteria as a probability distribution rather than as the point estimates used in a deterministic approach can provide a more realistic estimation of risk. The probability model should be useful for estimating the quantitative risk of bacterial survival during inactivation.

Citing Articles

3-D stochastic modeling approach in thermal inactivation: estimation of thermal survival kinetics of O157:H7 in a hamburger after exposure to desiccation stress.

Yabe H, Abe H, Muramatsu Y, Koyama K, Koseki S Appl Environ Microbiol. 2024; 90(6):e0078924.

PMID: 38780259 PMC: 11218657. DOI: 10.1128/aem.00789-24.


Point-of-Care Diagnostic System for Viable Species via Improved Propidium Monoazide and Recombinase Polymerase Amplification Based Nucleic Acid Lateral Flow.

Lee S, Oh S Diagnostics (Basel). 2024; 14(8).

PMID: 38667476 PMC: 11049151. DOI: 10.3390/diagnostics14080831.


L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects.

Liu J, Xu J, Wang B, Rao Z, Zhang W Amino Acids. 2021; 53(9):1301-1312.

PMID: 34401958 DOI: 10.1007/s00726-021-03066-9.


The COM-Poisson Process for Stochastic Modeling of Osmotic Inactivation Dynamics of .

Polese P, Del Torre M, Stecchini M Front Microbiol. 2021; 12:681468.

PMID: 34305844 PMC: 8300431. DOI: 10.3389/fmicb.2021.681468.

References
1.
Robinson T, Aboaba O, Kaloti A, Ocio M, Baranyi J, Mackey B . The effect of inoculum size on the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2002; 70(1-2):163-73. DOI: 10.1016/s0168-1605(01)00541-4. View

2.
Hedges A . Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol. 2002; 76(3):207-14. DOI: 10.1016/s0168-1605(02)00022-3. View

3.
Pouillot R, Albert I, Cornu M, Denis J . Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes. Int J Food Microbiol. 2002; 81(2):87-104. DOI: 10.1016/s0168-1605(02)00192-7. View

4.
Ross T, McMeekin T . Modeling microbial growth within food safety risk assessments. Risk Anal. 2003; 23(1):179-97. DOI: 10.1111/1539-6924.00299. View

5.
Elfwing A, LeMarc Y, Baranyi J, Ballagi A . Observing growth and division of large numbers of individual bacteria by image analysis. Appl Environ Microbiol. 2004; 70(2):675-8. PMC: 348858. DOI: 10.1128/AEM.70.2.675-678.2004. View