» Articles » PMID: 27921040

New Insights into the Molecular Mechanisms Targeting Tubular Channels/Transporters in PKD Development

Overview
Specialty Nephrology
Date 2016 Dec 7
PMID 27921040
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Autosomal dominant polycystic kidney disease (PKD) or autosomal recessive PKD is caused by a mutation in the , or gene, which encodes polycystin-1, polycystin-2 or fibrocystin, respectively. Embryonic and postnatal mutation studies show that transport or channel function is dysregulated before the initiation of cystogenesis, suggesting that the abnormality of transport or channel function plays a critical role in the pathology of PKD.

Summary: Polycystin-2 by itself is a calcium-permeable cation channel, and its channel function can be regulated by polycystin-1 or fibrocystin. In this paper, we reviewed the current knowledge about calcium transports and cyclic adenosine monophosphate (cAMP)-driven chloride transports in PKD. In addition, the function and the underlining mechanism of glucose transporters, phosphate transporters and water channels in PKD are also discussed.

Key Messages: Abnormalities in calcium handling and exuberant cAMP-dependent cystic fibrosis transmembrane conductance regulator-mediated fluid secretion in the collecting duct are the most important issues in the pathogenesis of PKD.

Citing Articles

Spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) including renal parenchymal malformations during fetal life and the implementation of prenatal exome sequencing (WES).

Koenigbauer J, Fangmann L, Reinhardt C, Weichert A, Henrich W, Saskia B Arch Gynecol Obstet. 2023; 309(6):2613-2622.

PMID: 37535131 PMC: 11147883. DOI: 10.1007/s00404-023-07165-8.


Recent advances in understanding ion transport mechanisms in polycystic kidney disease.

Sudarikova A, Vasileva V, Sultanova R, Ilatovskaya D Clin Sci (Lond). 2021; 135(21):2521-2540.

PMID: 34751394 PMC: 8589009. DOI: 10.1042/CS20210370.


The Biology of Vasopressin.

Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T Biomedicines. 2021; 9(1).

PMID: 33477721 PMC: 7832310. DOI: 10.3390/biomedicines9010089.


Prenatal genetic considerations of congenital anomalies of the kidney and urinary tract (CAKUT).

Talati A, Webster C, Vora N Prenat Diagn. 2019; 39(9):679-692.

PMID: 31343747 PMC: 7272185. DOI: 10.1002/pd.5536.


Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies.

Szabo T, Orosz P, Balogh E, Javorszky E, Mattyus I, Bereczki C Pediatr Nephrol. 2018; 33(10):1713-1721.

PMID: 29956005 DOI: 10.1007/s00467-018-3992-5.

References
1.
Yang J, Zhang S, Zhou Q, Guo H, Zhang K, Zheng R . PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. J Biochem Mol Biol. 2007; 40(4):467-74. DOI: 10.5483/bmbrep.2007.40.4.467. View

2.
Noda Y, Sohara E, Ohta E, Sasaki S . Aquaporins in kidney pathophysiology. Nat Rev Nephrol. 2010; 6(3):168-78. DOI: 10.1038/nrneph.2009.231. View

3.
OSullivan D, Torres V, Gabow P, Thibodeau S, King B, Bergstralh E . Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1998; 32(6):976-83. DOI: 10.1016/s0272-6386(98)70072-1. View

4.
Uchic M, Lechene C, Grantham J . Renal epithelial cyst formation and enlargement in vitro: dependence on cAMP. Proc Natl Acad Sci U S A. 1989; 86(15):6007-11. PMC: 297761. DOI: 10.1073/pnas.86.15.6007. View

5.
Roos K, Strait K, Raphael K, Blount M, Kohan D . Collecting duct-specific knockout of adenylyl cyclase type VI causes a urinary concentration defect in mice. Am J Physiol Renal Physiol. 2011; 302(1):F78-84. PMC: 3251343. DOI: 10.1152/ajprenal.00397.2011. View