» Articles » PMID: 27916961

Recent Progress in Electrochemical Biosensors for Glycoproteins

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2016 Dec 6
PMID 27916961
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

Citing Articles

Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor.

Kolanovic D, Pasupuleti R, Wallner J, Mlynek G, Wiltschi B Bioconjug Chem. 2024; 35(12):1944-1958.

PMID: 39625149 PMC: 11660155. DOI: 10.1021/acs.bioconjchem.4c00467.


An electrochemically synthesized molecularly imprinted polymer for highly selective detection of breast cancer biomarker CA 15-3: a promising point-of-care biosensor.

Oliveira D, Barcelay Y, Moreira F RSC Adv. 2024; 14(22):15347-15357.

PMID: 38741963 PMC: 11089526. DOI: 10.1039/d4ra02051k.


Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels.

Liu L, Ma X, Chang Y, Guo H, Wang W Biosensors (Basel). 2023; 13(8).

PMID: 37622871 PMC: 10452607. DOI: 10.3390/bios13080785.


Facile fabrication of hierarchically nanostructured gold electrode for bio-electrochemical applications.

Sondhi P, Neupane D, Bhattarai J, Demchenko A, Stine K J Electroanal Chem (Lausanne). 2022; 924.

PMID: 36405880 PMC: 9673609. DOI: 10.1016/j.jelechem.2022.116865.


Molecular imprinting of glycoproteins: From preparation to cancer theranostics.

Ali M, Zhu S, Amin F, Hussain D, Du Z, Hu L Theranostics. 2022; 12(5):2406-2426.

PMID: 35265217 PMC: 8899583. DOI: 10.7150/thno.69189.


References
1.
Ma F, Rehman A, Liu H, Zhang J, Zhu S, Zeng X . Glycosylation of quinone-fused polythiophene for reagentless and label-free detection of E. coli. Anal Chem. 2015; 87(3):1560-8. DOI: 10.1021/ac502712q. View

2.
Tarasov A, Gray D, Tsai M, Shields N, Montrose A, Creedon N . A potentiometric biosensor for rapid on-site disease diagnostics. Biosens Bioelectron. 2016; 79:669-78. DOI: 10.1016/j.bios.2015.12.086. View

3.
Harris S, Spears P, Havell E, Hamrick T, Horton J, Orndorff P . Characterization of Escherichia coli type 1 pilus mutants with altered binding specificities. J Bacteriol. 2001; 183(13):4099-102. PMC: 95295. DOI: 10.1128/JB.183.13.4099-4102.2001. View

4.
Zhang H, Liu L, Fu X, Zhu Z . Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens Bioelectron. 2012; 42:23-30. DOI: 10.1016/j.bios.2012.10.076. View

5.
Munzer A, Michael Z, Star A . Carbon nanotubes for the label-free detection of biomarkers. ACS Nano. 2013; 7(9):7448-53. DOI: 10.1021/nn404544e. View