» Articles » PMID: 27911750

Homeostasis Meets Motivation in the Battle to Control Food Intake

Overview
Journal J Neurosci
Specialty Neurology
Date 2016 Dec 3
PMID 27911750
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity.

Citing Articles

Binge Eating and Obesity Differentially Alter the Mesolimbic Endocannabinoid System in Rats.

Schoukroun F, Herbeaux K, Andry V, Goumon Y, Bourdy R, Befort K Int J Mol Sci. 2025; 26(3).

PMID: 39941025 PMC: 11818181. DOI: 10.3390/ijms26031240.


The influence of high-fat diet on nicotine vapor self-administration, neuronal excitability, and leptin levels in adult mice.

Tetteh-Quarshie S, Morrison K, Olszewski N, Young L, Mensah E, Sword M Physiol Behav. 2025; 292:114823.

PMID: 39870287 PMC: 11874065. DOI: 10.1016/j.physbeh.2025.114823.


Function of orexin-1 receptor signaling in the olfactory tubercle in odor-guided attraction and aversion.

Ahasan M, Alam M, Murata Y, Taniguchi M, Yamaguchi M Commun Biol. 2024; 7(1):1702.

PMID: 39725686 PMC: 11671599. DOI: 10.1038/s42003-024-07438-1.


Distinct basal forebrain-originated neural circuits promote homoeostatic feeding and suppress hedonic feeding in male mice.

Liu H, Bean J, Li Y, Yu M, Ginnard O, Conde K Nat Metab. 2024; 6(9):1775-1790.

PMID: 39112722 PMC: 11881791. DOI: 10.1038/s42255-024-01099-4.


The rostromedial tegmental nucleus gates fat overconsumption through ventral tegmental area output in male rats.

Schoukroun F, Befort K, Bourdy R Neuropsychopharmacology. 2024; 49(10):1569-1579.

PMID: 38570645 PMC: 11319719. DOI: 10.1038/s41386-024-01855-w.


References
1.
Konner A, Janoschek R, Plum L, Jordan S, Rother E, Ma X . Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007; 5(6):438-49. DOI: 10.1016/j.cmet.2007.05.004. View

2.
Castro D, L Cole S, Berridge K . Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015; 9:90. PMC: 4466441. DOI: 10.3389/fnsys.2015.00090. View

3.
Meredith G, Baldo B, Andrezjewski M, Kelley A . The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct. 2008; 213(1-2):17-27. PMC: 2556127. DOI: 10.1007/s00429-008-0175-3. View

4.
Kempadoo K, Tourino C, Cho S, Magnani F, Leinninger G, Stuber G . Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci. 2013; 33(18):7618-26. PMC: 3865559. DOI: 10.1523/JNEUROSCI.2588-12.2013. View

5.
Schultz W, Dayan P, Montague P . A neural substrate of prediction and reward. Science. 1997; 275(5306):1593-9. DOI: 10.1126/science.275.5306.1593. View