» Articles » PMID: 27899614

SUBA4: the Interactive Data Analysis Centre for Arabidopsis Subcellular Protein Locations

Overview
Specialty Biochemistry
Date 2016 Dec 1
PMID 27899614
Citations 202
Authors
Affiliations
Soon will be listed here.
Abstract

The SUBcellular location database for Arabidopsis proteins (SUBA4, http://suba.live) is a comprehensive collection of manually curated published data sets of large-scale subcellular proteomics, fluorescent protein visualization, protein-protein interaction (PPI) as well as subcellular targeting calls from 22 prediction programs. SUBA4 contains an additional 35 568 localizations totalling more than 60 000 experimental protein location claims as well as 37 new suborganellar localization categories. The experimental PPI data has been expanded to 26 327 PPI pairs including 856 PPI localizations from experimental fluorescent visualizations. The new SUBA4 user interface enables users to choose quickly from the filter categories: 'subcellular location', 'protein properties', 'protein-protein interaction' and 'affiliations' to build complex queries. This allows substantial expansion of search parameters into 80 annotation types comprising 1 150 204 new annotations to study metadata associated with subcellular localization. The 'BLAST' tab contains a sequence alignment tool to enable a sequence fragment from any species to find the closest match in Arabidopsis and retrieve data on subcellular location. Using the location consensus SUBAcon, the SUBA4 toolbox delivers three novel data services allowing interactive analysis of user data to provide relative compartmental protein abundances and proximity relationship analysis of PPI and coexpression partners from a submitted list of Arabidopsis gene identifiers.

Citing Articles

AtSubP-2.0: An integrated web server for the annotation of Arabidopsis proteome subcellular localization using deep learning.

Duhan N, Kaundal R Plant Genome. 2025; 18(1):e20536.

PMID: 39924294 PMC: 11807733. DOI: 10.1002/tpg2.20536.


Reliability of plastid and mitochondrial localisation prediction declines rapidly with the evolutionary distance to the training set increasing.

Gould S, Magiera J, Garcia Garcia C, Raval P PLoS Comput Biol. 2024; 20(11):e1012575.

PMID: 39527633 PMC: 11581415. DOI: 10.1371/journal.pcbi.1012575.


Confronting the data deluge: How artificial intelligence can be used in the study of plant stress.

Koh E, Sunil R, Lam H, Mutwil M Comput Struct Biotechnol J. 2024; 23:3454-3466.

PMID: 39415960 PMC: 11480249. DOI: 10.1016/j.csbj.2024.09.010.


Evolution of the regulatory subunits for the heteromeric acetyl-CoA carboxylase.

Conrado A, Jorge G, Rao R, Xu C, Xu D, Li-Beisson Y Philos Trans R Soc Lond B Biol Sci. 2024; 379(1914):20230353.

PMID: 39343023 PMC: 11449227. DOI: 10.1098/rstb.2023.0353.


EARLY NODULIN93 acts via cytochrome c oxidase to alter respiratory ATP production and root growth in plants.

Lee C, Le X, Gawryluk R, Casaretto J, Rothstein S, Millar A Plant Cell. 2024; 36(11):4716-4731.

PMID: 39179507 PMC: 11530774. DOI: 10.1093/plcell/koae242.


References
1.
Heazlewood J, Millar A . AMPDB: the Arabidopsis Mitochondrial Protein Database. Nucleic Acids Res. 2004; 33(Database issue):D605-10. PMC: 540002. DOI: 10.1093/nar/gki048. View

2.
Heazlewood J, Tonti-Filippini J, Gout A, Day D, Whelan J, Millar A . Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell. 2003; 16(1):241-56. PMC: 301408. DOI: 10.1105/tpc.016055. View

3.
Hooper C, Tanz S, Castleden I, Vacher M, Small I, Millar A . SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics. 2014; 30(23):3356-64. DOI: 10.1093/bioinformatics/btu550. View

4.
Nelson B, Cai X, Nebenfuhr A . A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007; 51(6):1126-36. DOI: 10.1111/j.1365-313X.2007.03212.x. View

5.
Gomes de Oliveira DalMolin C, Quek L, Palfreyman R, Brumbley S, Nielsen L . C4GEM, a genome-scale metabolic model to study C4 plant metabolism. Plant Physiol. 2010; 154(4):1871-85. PMC: 2996019. DOI: 10.1104/pp.110.166488. View