» Articles » PMID: 27892463

Reconfigurable Exciton-plasmon Interconversion for Nanophotonic Circuits

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Nov 29
PMID 27892463
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.

Citing Articles

Strongly coupled plasmon-exciton polaritons for photobleaching suppression.

Anulyte J, Zickus V, Buzavaite-Verteliene E, Faccio D, Balevicius Z Nanophotonics. 2024; 13(22):4091-4099.

PMID: 39635442 PMC: 11501053. DOI: 10.1515/nanoph-2024-0259.


Broadband plasmonic half-subtractor and digital demultiplexer in pure parallel connections.

Wu P, Chang Y, Huang C Nanophotonics. 2024; 11(16):3623-3629.

PMID: 39634449 PMC: 11501105. DOI: 10.1515/nanoph-2022-0267.


Coherent control of enhanced second-harmonic generation in a plasmonic nanocircuit using a transition metal dichalcogenide monolayer.

Wu P, Lee W, Liu C, Huang C Nat Commun. 2024; 15(1):1855.

PMID: 38424147 PMC: 10904783. DOI: 10.1038/s41467-024-46209-8.


Recent progress of exciton transport in two-dimensional semiconductors.

Lee H, Kim Y, Ryu J, Kim S, Bae J, Koo Y Nano Converg. 2023; 10(1):57.

PMID: 38102309 PMC: 10724105. DOI: 10.1186/s40580-023-00404-3.


Ultrafast Thermionic Electron Injection Effects on Exciton Formation Dynamics at a van der Waals Semiconductor/Metal Interface.

Keller K, Rojas-Aedo R, Zhang H, Schweizer P, Allerbeck J, Brida D ACS Photonics. 2022; 9(8):2683-2690.

PMID: 35996365 PMC: 9389617. DOI: 10.1021/acsphotonics.2c00394.


References
1.
Lee H, Kim M, Jin Y, Han G, Lee Y, Kim J . Selective Amplification of the Primary Exciton in a MoS_{2} Monolayer. Phys Rev Lett. 2015; 115(22):226801. DOI: 10.1103/PhysRevLett.115.226801. View

2.
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A . Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol. 2013; 8(7):497-501. DOI: 10.1038/nnano.2013.100. View

3.
Jeong H, Lee S, Ly T, Han G, Kim H, Nam H . Visualizing Point Defects in Transition-Metal Dichalcogenides Using Optical Microscopy. ACS Nano. 2015; 10(1):770-7. DOI: 10.1021/acsnano.5b05854. View

4.
Kang K, Xie S, Huang L, Han Y, Huang P, Mak K . High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015; 520(7549):656-60. DOI: 10.1038/nature14417. View

5.
Miyata M, Takahara J . Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding. Opt Express. 2013; 21(7):7882-90. DOI: 10.1364/OE.21.007882. View